Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomimetic synthesis of ordered silica structures mediated by block copolypeptides


In biological systems such as diatoms and sponges, the formation of solid silica structures with precisely controlled morphologies is directed by proteins and polysaccharides and occurs in water at neutral pH and ambient temperature1,2,3,4. Laboratory methods, in contrast, have to rely on extreme pH conditions and/or surfactants to induce the condensation of silica precursors into specific morphologies or patterned structures5,6,7,8,9,10. This contrast in processing conditions and the growing demand for benign synthesis methods that minimize adverse environmental effects have spurred much interest in biomimetic approaches in materials science4,5. The recent demonstration that silicatein—a protein found in the silica spicules of the sponge Tethya aurantia11—can hydrolyse and condense the precursor molecule tetraethoxysilane to form silica structures with controlled shapes at ambient conditions12,13,14 seems particularly promising in this context. Here we describe synthetic cysteine-lysine block copolypeptides that mimic the properties of silicatein: the copolypeptides self-assemble into structured aggregates that hydrolyse tetraethoxysilane while simultaneously directing the formation of ordered silica morphologies. We find that oxidation of the cysteine sulphydryl groups, which is known to affect the assembly of the block copolypeptide15, allows us to produce different structures: hard silica spheres and well-defined columns of amorphous silica are produced using the fully reduced and the oxidized forms of the copolymer, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis strategy to produce block copolypeptides.
Figure 2: Different ordered silica shapes obtained using block copolypeptide 6.


  1. 1

    Simpson, T. L. & Volcani, B. E. Silicon and Siliceous Structures in Biological Systems (Springer, New York, 1981).

    Book  Google Scholar 

  2. 2

    Kröger, N., Lehmann, G., Rachel, R. & Sumper, M. Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur. J. Biochem. 250, 99–105 (1997).

    Article  PubMed  Google Scholar 

  3. 3

    Vrieling, E. G., Beelen, T. P. M., van Santen, R. A. & Gieskes, W. W. C. Diatom silicon mineralization as an inspirational source of new approaches to silica production. J. Biotechnol. 70, 39–51 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Morse, D. E. Silicon biotechnology: harnessing biological silica production to make new materials. Trends Biotechnol. 17, 230–232 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Mann, S. J. Biomineralization and biomimetic materials chemistry. J. Mater. Chem. 5, 935–946 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Oliver, S., Kuperman, A., Coombs, N., Lough, A. & Ozin, G. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378, 47–50 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Monnier, A. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1303 (1993).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn Engl. 38, 56–77 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Shimizu, K., Cha, J., Stucky, G. D. & Morse, D. E. Silicatein alpha: cathepsin l-like protein in sponge biosilica. Proc. Natl Acad. Sci. USA 95, 6234–6238 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12

    Cha, J. N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  13. 13

    Zhou, Y., Shimizu, K., Cha, J. N., Stucky, G. D. & Morse, D. E. Efficient catalysis of polysiloxane synthesis by silicatein alpha requires specific hydroxy and imidazole functionalities. Angew. Chem. Int. Edn Engl. 38, 780–782 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Morse, D. E. Silicon biotechnology: proteins, genes and molecular mechanisms controlling biosilica nanofabrication offer new routes to polysiloxane synthesis. Organosilicon Chemistry IV: from Molecules to Materials (eds Auner, N. & Weis, J. ) (Wiley-VCH, New York, in the press).

  15. 15

    Liff, M. I. & Zimmerman, M. N. NMR Study of crosslinking by oxidation of four-cysteine polypeptide models of the elastic network phase of wool fibre. Polym. Int. 47, 375–385 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Berger, A., Noguchi, J. & Katchalski, E. Poly-L-cysteine. J. Am. Chem. Soc. 78, 4483–4488 (1956).

    CAS  Article  Google Scholar 

  17. 17

    Zhang, L., Yu, K. & Eisenberg, A. Ion-induced morphological changes in crew-cut aggregates of amphiphilic block copolymers. Science 272, 1777–1779 (1996).

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Bamford, C. H., Elliot, A. & Hanby, W. E. Synthetic Polypeptides (Academic, New York, 1956).

    Google Scholar 

  19. 19

    Deming, T. J. Facile synthesis of block copolypeptides of defined architecture. Nature 390, 386–389 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  20. 20

    Mizutani, T., Nagase, H., Fujiwara, N. & Ogoshi, H. Silicic acid polymerization catalyzed by amines and polyamines. Bull. Chem. Soc. Jpn 71, 2017–2022 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Lukens, W. W. Jr, Schmidt-Winkel, P., Zhao, D., Feng, J. & Stucky, G. D. Evaluating pore sizes in mesoporous materials: a simplified standard adsorption method and a simplified Broekhoff-de Boer method. Langmuir 15, 5403–5409 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Huo, Q. S., Feng, J. L., Schuth, F. & Stucky, G. D. Preparation of hard mesoporous silica spheres. Chem. Mater. 9, 14–15 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Zhao, D., Yang, P. D., Huo, Q. S., Chmelka, B. F. & Stucky, G. D. Topological construction of mesoporous materials. Curr. Opin. Solid State Mater. Sci. 3, 111–121 (1998).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis 2nd edn (Fisheries Research Board of Canada, Ottawa, 1972).

    Google Scholar 

  25. 25

    Brzezinski, M. A. & Nelson, D. M. A solvent-extraction method for the colorimetric determination of nanomolar concentrations of silicic-acid in seawater. Mar. Chem. 19, 139–151 (1986).

    CAS  Article  Google Scholar 

Download references


We thank M. Brzezinski and B. Chmelka for suggestions, and E. Skogen for the light microscopy pictures. This work was supported by the US Army Research Office Multidisciplinary University Research Initiative, the US Office of Naval Research, the NOAA National Sea Grant College Program, the US Department of Commerce, the California Sea Grant College System, the MRSEC Program of the NSF to the UCSB Materials Research Laboratory, and the Dow Corning Corporation.

Author information



Corresponding author

Correspondence to Timothy J. Deming.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cha, J., Stucky, G., Morse, D. et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides . Nature 403, 289–292 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing