Letter | Published:

Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ

Naturevolume 403pages746750 (2000) | Download Citation

Subjects

Abstract

Although the crystal structures of the copper oxide high-temperature superconductors are complex and diverse, they all contain some crystal planes consisting of only copper and oxygen atoms in a square lattice: superconductivity is believed to originate from strongly interacting electrons in these CuO2 planes. Substituting a single impurity atom for a copper atom strongly perturbs the surrounding electronic environment and can therefore be used to probe high-temperature superconductivity at the atomic scale. This has provided the motivation for several experimental1,2,3,4,5,6,7,8 and theoretical studies9,10,11,12,13,14,15,16,17,18,19,20. Scanning tunnelling microscopy (STM) is an ideal technique for the study of such effects at the atomic scale, as it has been used very successfully to probe individual impurity atoms in several other systems21,22,23,24,25. Here we use STM to investigate the effects of individual zinc impurity atoms in the high-temperature superconductor Bi2Sr2CaCu2O8+δ. We find intense quasiparticle scattering resonances26 at the Zn sites, coincident with strong suppression of superconductivity within 15 Å of the scattering sites. Imaging of the spatial dependence of the quasiparticle density of states in the vicinity of the impurity atoms reveals the long-sought four-fold symmetric quasiparticle ‘cloud’ aligned with the nodes of the d-wave superconducting gap which is believed to characterize superconductivity in these materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Maeda, A., Yabe, T., Takebayashi, S., Hase, M. & Uchinokura, K. Substitution of 3d metals for Cu in Bi2(Sr 0.6Ca0.4)3Cu2Oy Phys. Rev. B 41, 4112–4117 (1990).

  2. 2

    Ishida, K. et al. Gapless superconductivity in Zn-doped YBa2Cu 3O7 studied by Cu NMR and NQR. Possibility of d-wave superconductivity in high-Tc oxides Physica C 179, 29–38 (1991).

  3. 3

    Bonn, D. A. et al. Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95. Phys Rev. B 50, 4051–4063 ( 1994).

  4. 4

    Fukuzumi, Y., Mizuhashi, K., Takenaka, K. & Uchida, S. Universal superconductor-insulator transition and Tc depression in Zn-substituted high-Tc cuprates in the underdoped regime. Phys. Rev. Lett. 76, 684– 687 (1996).

  5. 5

    Nachumi, B. et al. Muon spin relaxation studies of Zn-substitution effects in high- Tc cuprate superconductors Phys. Rev. Lett. 77, 5421–5424 (1996).

  6. 6

    Basov, D.N., Dabrowski, B. & Timusk, T. Infrared probe of transition from superconductor to nonmetal in YBa2(Cu1–xZnx)4O 8 Phys. Rev. Lett. 81, 2132– 2135 (1998).

  7. 7

    White,, P.J et al. Zn impurities in Bi2Sr2Ca(Cu1–x Znx)2O8+δ – electronic structure evolution. Preprint cond-mat/9901349 at 〈http://xxx.lanl.gov〉 (1999).

  8. 8

    Fong,, H.F et al. Effect of nonmagnetic impurities on the magnetic resonance peak in YBa2Cu3O7. Phys. Rev. Lett. 82, 1939–1942 ( 1999).

  9. 9

    Lee,, P. A. Localized states in a d-wave superconductor Phys. Rev. Lett. 71, 1887–1890 ( 1993).

  10. 10

    Byers,, J.M., Flatté, M.E. & Scalapino, D.J. Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic superconductor Phys. Rev. Lett. 71, 3363–3366 ( 1993).

  11. 11

    Sun, Y. & Maki, K. Impurity effects in d-wave superconductors Phys. Rev. B 51, 6059– 6063 (1995).

  12. 12

    Balatsky, A.V., Salkola, M.I. & Rosengren, A. Impurity-induced virtual bound states in d-wave superconductors Phys. Rev. B 51, 15547– 15551 (1995).

  13. 13

    Salkola,, M.I., Balatsky, A.V. & Scalapino, D.J. Theory of scanning tunneling microscopy probe of impurity states in a d-wave superconductor Phys. Rev. Lett. 77, 1841–1844 (1996).

  14. 14

    Hirschfeld, P.J. & Puttika, W.O. Theory of thermal conductivity in YBa2Cu3O7–δ Phys. Rev. Lett. 77, 3909–3912 (1996).

  15. 15

    Franz, M., Kallin, C. & Berlinsky, A.J. Impurity scattering and localization in d-wave superconductors Phys. Rev. B 54, R6897– R6900 (1996).

  16. 16

    Salkola, M.I. & Schrieffer, J.R. Unusual states of inhomogeneous dx2-y2 + idxy superconductors Phys. Rev. B 58, R5952–R5955 (1998).

  17. 17

    Atkinson, W.A. & MacDonald, A.H. Visualizing quasiparticle scattering resonances Science 285, 57– 58 (1999).

  18. 18

    Tsuchiura, H., Tanaka, Y., Ogata, M. & Kashiwaya, S. Quasiparticle properties around a nonmagnetic impurity in the superconducting state of the two-dimensional t-J model. J. Phys. Soc. Jpn 68, 2510–2513 (1999).

  19. 19

    Flatte, M.E. & Byers, J.M. Local electronic structure of defects in superconductors Solid State Phys. 52, 137–228 (1999).

  20. 20

    Salkola, M.I., Balatsky, A.V. & Schrieffer, J.R. Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors Phys. Rev. B 55, 12648–12661 (1997).

  21. 21

    Crommie, M.F., Lutz, C.P. & Eigler, D.M. Imaging standing waves in a two-dimensional gas Nature 363, 524–527 ( 1993).

  22. 22

    Zheng, J.F et al. Scanning tunneling microscopy studies of Si donors (SiGa ) in GaAs. Phys. Rev. Lett. 72, 1490 –1493 (1994).

  23. 23

    Yazdani, A., Jones, B.A., Lutz, C.P., Crommie, M.F. & Eigler, D.M. Probing the local effects of magnetic impurities on superconductivity Science 275, 1767– 1770 (1997).

  24. 24

    Madhavan, V., Chen, W. Jamneala, T., Crommie, M.F. & Wingreen, N.S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance Science 280, 567–569 (1998).

  25. 25

    Wittneven, Chr., Dombrowski, R., Morgenstern, M. & Wiesendanger, R. Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy Phys. Rev. Lett. 81, 5616– 5619 (1998).

  26. 26

    Hudson, E.W., Pan, S.H., Gupta, A.K., Ng, K.-W. & Davis, J.C. Atomic-scale quasiparticle scattering resonances in Bi 2Sr2CaCu2O8+δ Science 285, 88–91 ( 1999).

  27. 27

    Yazdani, A., Howald, C.M., Lutz, C.P., Kapitulnik, A. & Eigler, D.M. Impurity-induced bound excitations on the surface of Bi1Sr2CaCu 2O8 Phys. Rev. Lett. 83, 176–179 (1999).

  28. 28

    Motohira, N., Kuwahara, K., Hasegawa, T., Kishio, K. & Kitazawa, K. Single crystal growth of Bi2Sr2Ca n–1CunOy superconductors by the floating zone method J. Ceram. Soc. Jpn 97, 1009– 1014 (1989).

  29. 29

    Wells, B.O. et al. Evidence for k-dependent, in-plane anisotropy of the superconducting gap in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 46, 11830– 11834 (1992).

  30. 30

    Andersen, O. K., Jepsen, O., Liechtenstein, A. I. & Mazin, I. I. Plane dimpling and saddle-point bifurcation in the band structures of optimally doped high-temperature superconductors: a tight-binding model. Phys. Rev. B 49, 4145–4157 (1994).

  31. 31

    Mahajan, A.V., Alloul, H., Collin, G. & Marucco, J.F. 89Y NMR probe of Zn induced local moments in YBa2(Cu1–yZny)3O 6+x Phys. Rev. Lett. 72, 3100– 3103 (1994).

  32. 32

    Nagaosa, N. & Lee, P.A. Kondo effect in high-T c cuprates. Phys. Rev. Lett. 79, 3755 –3758 (1997).

Download references

Acknowledgements

We thank A. Balatsky, D. Bonn, M. Crommie, M. Flatté, M. Franz, S. Kashiwaya, A. de Lozanne, A. MacDonald, V. Madhavan, M. Ogata, J. Orenstein, D. J. Scalapino, Z.-X. Shen, Y. Tanaka and D. van der Marel for conversations and communications. This work was supported by the LDRD Program of the Lawrence Berkeley National Laboratory under contract to the Department of Energy, by the D. & L. Packard Foundation, by an IBM predoctoral fellowship (K.M.L.), by Grant-in-Aid for Scientific Research on Priority Area (Japan), and by a COE grant from the Ministry of Education, Japan.

Author information

Author notes

    • S. H. Pan
    •  & H. Eisaki

    Present address: Department of Physics, Boston University, Boston, Massachusetts, 02215, USA

Affiliations

  1. Department of Physics, University of California, Berkeley, 94720, California, USA

    • S. H. Pan
    • , E. W. Hudson
    • , K. M. Lang
    •  & J. C. Davis
  2. Department of Superconductivity, University of Tokyo, Tokyo, 113-8656, Japan

    • H. Eisaki
    •  & S. Uchida
  3. Department of Applied Physics, Stanford University, Stanford, 94305, California, USA

    • H. Eisaki

Authors

  1. Search for S. H. Pan in:

  2. Search for E. W. Hudson in:

  3. Search for K. M. Lang in:

  4. Search for H. Eisaki in:

  5. Search for S. Uchida in:

  6. Search for J. C. Davis in:

Corresponding author

Correspondence to J. C. Davis.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/35001534

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.