Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant

Abstract

The functions of serotonin have been assigned through serotonin-receptor-specific drugs and mutants1,2; however, because a constellation of receptors remains when a single receptor subtype is inhibited, the coordinate responses to modulation of serotonin levels may be missed. Here we report the analysis of behavioural and neuroendocrine defects caused by a complete lack of serotonin signalling. Analysis of the C. elegans genome sequence showed that there is a single tryptophan hydroxylase gene (tph-1)—the key enzyme for serotonin biosynthesis. Animals bearing a tph-1 deletion mutation do not synthesize serotonin but are fully viable. The tph-1 mutant shows abnormalities in behaviour and metabolism that are normally coupled with the sensation and ingestion of food: rates of feeding and egg laying are decreased; large amounts of fat are stored; reproductive lifespan is increased; and some animals arrest at the metabolically inactive dauer stage. This metabolic dysregulation is, in part, due to downregulation of tranforming growth factor-β and insulin-like neuroendocrine signals. The action of the C. elegans serotonergic system in metabolic control is similar to mammalian serotonergic input to metabolism and obesity2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tph-1 encodes a tryptophan hydroxylase.
Figure 2: tph-1 is expressed in serotonergic neurons.
Figure 3: tph-1(mg280) affects food-modulated behaviours, metabolism and reproductive longevity.
Figure 4: Metabolic defects in tph-1(mg280) animals.

Similar content being viewed by others

References

  1. Sanders-Bush, E. & Mayer, S. E. in Goodman & Gilman's Pharmacological Basis of Therapeutics 9th edn (eds Hardman, J. G. et al.) 249–263 (McGraw-Hill, New York, 1996).

    Google Scholar 

  2. Leibowitz, S. F. & Alexander, J. T. Hypothalamic serotonin in control of eating behaviour, meal size, and body weight. Biol. Psychiatry 44, 851–864 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Loer, C. M., Davidson, B. D. & McKerrow, J. M. A phenylalanine hydroxylase gene from the nematode C. elegans is expressed in the hypodermis. J. Neurogenet. 13, 157–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. D'Sa, C. M., Arthur, R. E. Jr & Kuhn, D. M. Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: delineation of the enzyme catalytic core. Neurochem. 67, 917–926 (1996).

    Article  CAS  Google Scholar 

  5. Rand, J. B. & Nonet, M. L. Synaptic Transmission in C. elegans II (eds Riddle, D. L. et al.) 611–643 (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  6. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. H. Reverse genetics by chemical mutagenesis in C. elegans. Nature Genet. 17, 119–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. E. & Evans, P. D. Serotonin and octopamine in the nematode C. elegans. Science 216, 1012–1014 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Avery, L. & Horvitz, H. R. Effects of starvation and neuroactive drugs on feeding in C. elegans. J. Exp. Zool. 253, 263–270 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Sulston, J., Dew, M. & Brenner, S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J. Comp. Neuro. 163, 215–226 (1975).

    Article  CAS  Google Scholar 

  10. Weinshenker, D, Garriga, G. & Thomas, J. H. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J. Neurosci 15, 6975–6985 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waggoner, L. E., Zhou, G. T., Schafer, R. W. & Schafer, W. R. Control of alternative behavioural states by serotonin in Caenorhabditis elegans. Neuron 21, 203–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Duerr, J. S. et al. The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviours. J. Neurosci. 19, 72–84 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riddle, D. L. Genetic and Environmental Regulation of Dauer Larva Development in C. elegans II. (eds Riddle, D. L. et al.) 739–768 (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  14. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in C. elegans. Science 277, 942–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Ren, P. F. et al. Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science 274, 1389–1391 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Schackwitz, W. S., Inoue, T. & Thomas, J. H. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 17, 719–728 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Bargmann, C. Neurobiology of the C. elegans genome. Science 282, 2028–2033 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zwaal, R. R., Mendel, J. E., Sternberg, P. W. & Plasterk, R. H. A. Two neuronal G proteins are involved in chemosensation of the C. elegans dauer-inducing pheromone. Genetics 145, 715–727 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Patterson, G. I., Koweek, A., Wong, A., Liu, Y. & Ruvkun, G. The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the C. elegans dauer pathway. Genes Dev. 11, 2679–2690 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behaviour, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Duret, L. Gues, N., Peitsch, M. & Bairoch, A. New insulin-like proteins with atypical disulfide bond pattern characterized in C. elegans by comparative sequence analysis and homology modeling. Genome Res. 8, 348–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Peschke, E., Peschke, D., Hammer, T. & Csernus, V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J. Pineal Res. 23, 156–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Breum, L., Bjerre, U., Bak, J. F., Jacobsen, S. & Astrup, A. Long-term effects of fluoxetine on glycemic control in obese patients with non-insulin-dependent diabetes mellitus or glucose intolerance: influence on muscle glycogen synthase and insulin receptor kinase activity. Metabolism 44,1570–1576 (1995).

  27. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95,13091–13096 (1998).

  29. Nonogaki, K., Strack, A. M., Dallman, M. F. & Tecott, L. H. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nature Med. 4, 1152–1156 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Barzilai, A., Kennedy, T. E., Sweatt, J. D. & Kandel, E. R. 5-HT modulates protein synthesis and the expression of specific proteins during long-term facilitation in Aplysia sensory neurons. Neuron 2, 1577–1586 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Sternberg, S. Nurrish and J. Kaplan for advice on serotonin regulation of behaviour; members of the Ruvkun lab for critical reading of the manuscript. R. Lee for help with graphics; G. Sandoval for some strain characterizations; A. Lander for advice on his microscope and software, and especially R. Lints and S. Emmons for analysing the dopamine accumulation in tph-1(mg280). J.Y.S. was supported by a fellowship from the National Institutes of Health, M.V. by a fellowship from the DAAD German Academic Exchange Service, C.M.L. by NSF. This work was supported by grants from Hoechst AG to G.R., and grants from NIH to Y.S. Some nematode strains were supplied by the Caenorhabditis Genetics Center supported by the NIH and the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Ruvkun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sze, J., Victor, M., Loer, C. et al. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560–564 (2000). https://doi.org/10.1038/35000609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000609

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing