Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement


Bell's theorem1 states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle—even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized2 the fundamental significance of these quantum correlations (termed ‘entanglement’ by Schrödinger3) and the two-particle quantum predictions have found ever-increasing experimental support4. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered5,6; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method7 to observe three-photon entanglement, or ‘Greenberger–Horne–Zeilinger’ (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up for Greenberger–Horne–Zeilinger (GHZ) tests of quantum nonlocality.
Figure 2: A typical experimental result used in the GHZ argument.
Figure 3: All outcomes observed in the yyx, yxy and xyy experiments, obtained as in Fig. 2.
Figure 4: Predictions of quantum mechanics and of local realism, and observed results for the xxx experiment.


  1. 1

    Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964); reprinted Bell, J. S. Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  2. 2

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935).

    ADS  Article  Google Scholar 

  4. 4

    Aspect, A. Bell's inequality test: more ideal than ever. Nature 390, 189–190 (1999).

    ADS  Article  Google Scholar 

  5. 5

    Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell's Theorem, Quantum Theory, and Conceptions of the Universe (ed. Kafatos, M.) 73–76 (Kluwer Academic, Dordrecht, 1989).

    Google Scholar 

  6. 6

    Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8

    Mermin, N. D. What's wrong with these elements of reality? Phys. Today 43, 9–11 (1990).

    Google Scholar 

  9. 9

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  11. 11

    Laflamme, R., Knill, E., Zurek, W. H., Catasti, P. & Mariappan, S. V. S. NMR Greenberger-Horne-Zeilinger states. Phil. Trans. R. Soc. Lond. A 356, 1941–1947 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  12. 12

    Ou, Z.Y. & Mandel, L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  13. 13

    Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kwiat, P., Eberhard, P. E., Steinberger, A. M. & Chiao, R. Y. Proposal for a loophole-free Bell inequality experiment. Phys. Rev. A 49, 3209–3220 (1994).

    ADS  CAS  Article  Google Scholar 

  15. 15

    De Caro, L. & Garuccio, A. Reliability of Bell-inequality measurements using polarization correlations in parametric-down-conversion photons. Phys. Rev. A 50, R2803–R2805 (1994).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Popescu, S., Hardy, L. & Zukowski, M. Revisiting Bell's theorem for a class of down-conversion experiments. Phys. Rev. A 56, R4353–4357 (1997).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  17. 17

    Zukowski, M. Violations of local realism in multiphoton interference experiments. Phys. Rev. A 61, 022109 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1841 (1990).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  19. 19

    Roy, S. M. & Singh, V. Tests of signal locality and Einstein-Bell locality for multiparticle systems. Phys. Rev. Lett. 67, 2761–2764 (1991).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  20. 20

    Zukowski, M. & Kaszlikowski, D. Critical visibility for N-particle Greenberger-Horne-Zeilinger correlations to violate local realism. Phys. Rev. A 56, R1682–1685 (1997).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  21. 21

    Pearle, P. Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970).

    ADS  Article  Google Scholar 

  22. 22

    Clauser, J. & Shimony, A. Bell's theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  24. 24

    Bose, S., Vedral, V. & Knight, P. L. Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Haroche, S. Atoms and photons in high-Q cavities: next tests of quantum theory. Ann. NY Acad. Sci. 755, 73–86, (1995).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Cleve, R. & Buhrman, H. Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201–1204 (1997).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Zeilinger, A., Horne, M. A., Weinfurter, H. & Zukowski, M. Three particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995).

    ADS  Article  Google Scholar 

Download references


We thank D. M. Greenberger, M. A. Horne and M. Zukowski for useful discussions. This work was supported by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, the Austrian Academy of Sciences and the Training and Mobility of Researchers programme of the European Union.

Author information



Corresponding author

Correspondence to Anton Zeilinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, J., Bouwmeester, D., Daniell, M. et al. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000). https://doi.org/10.1038/35000514

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing