Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Energy for microbial life on Europa

A Correction to this article was published on 27 July 2000

A radiation-driven ecosystem on Jupiter's moon is not beyond the bounds of possibility.

Abstract

The planet Jupiter's moon Europa may harbour a subsurface water ocean1,2,3, but estimates of the available free energy have not been encouraging for supporting life1,4,5. Here I show that disequilibrium chemistry in the ocean's ice cover, driven by charged particles accelerated in Jupiter's magnetosphere, should produce enough organic and oxidant molecules to fuel a substantial Europan biosphere. Microbial life could exist in concentrations detectable by surface landers able to filter meltwater from Europa's ice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Jupiter's moon Europa is covered in ice, beneath which there may lie an ocean.

NASA

References

  1. 1

    Reynolds, R. T., Squyres, S. W., Colburn, D. S. & McKay, C. P. Icarus 56, 246–254 ( 1983).

    ADS  Article  Google Scholar 

  2. 2

    Pappalardo, R. T. et al. J. Geophys. Res. 104, 24015– 24055 (1999).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Greenberg, R. et al. Icarus 141, 263–286 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Jakosky, B. M. & Shock, E. L. J. Geophys. Res. 103 , 19359–19364 (1998).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gaidos, E. J. et al. Science 284, 1631– 1633 (1999).

    CAS  Article  Google Scholar 

  6. 6

    McCord, T. B. et al. J. Geophys. Res. 103, 8603– 8626 (1998).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Delitsky, M. L. & Lane, A. L. J. Geophys. Res. 102, 16385–16390 ( 1997).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Delitsky, M. L. & Lane, A. L. J. Geophys. Res. 103, 31391–31403 ( 1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Johnson, R. E. in Solar System Ices (eds Schmitt, B. et al.) 303– 334 (Kluwer, Dordrecht, 1998).

    Book  Google Scholar 

  10. 10

    Carlson, R. W. et al. Science 283, 2062– 2064 (1999).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Zahnle, K., Dones, L. & Levison, H. F. Icarus 136, 202– 222 (1998).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Varnes, E. S. & Jakosky, B. M. in Lunar Planet. Sci. abstr. 1082 (Lunar and Planetary Institute, Houston, 1999) (CD-ROM).

    Google Scholar 

  13. 13

    Brucato, J. R., Palumbo, M. E. & Strazzulla, G. Icarus 125, 135– 144 (1997).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Madigan, M. T. et al. Brock Biology of Microorganisms (Prentice Hall, Upper Saddle River, New Jersey, 1997).

    Google Scholar 

  15. 15

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Chyba.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chyba, C. Energy for microbial life on Europa. Nature 403, 381–382 (2000). https://doi.org/10.1038/35000281

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links