Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene flow between African- and European-derived honey bee populations in Argentina

Abstract

IN the Neotropics, introduced European honey bees (Apis mellifera L.)1,2 have been largely supplanted by bees descended from an African race, A. m. scutellata Lepetier, which were introduced into Brazil in the 1950s. Recent restriction enzyme analyses indicate that mitochondrial DNA in some neotropical populations is almost entirely of African origin3,4, and these data have been cited as evidence for asymmetrical gene flow between African- and European-derived populations3,4. Evaluation of the nature of hybridization in the Neotropics is, however, confounded by possible population size advantages for the African-derived group5–7. As an alternative approach, genetic interactions can be studied in transition areas between zones ecologically and climatically adaptive for both racial groups. We describe here results of a survey transecting regions populated by African- and European-derived honey bees in Argentina. Mitochondrial DNA, morphological and isoenzyme analyses show that substantial hybridization occurs between the two racial groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ruttner, F. Biogeography and Taxonomy of Honey Bees (Springer, Berlin, 1988).

    Book  Google Scholar 

  2. Sheppard, W. S. Am. Bee. J. 129, 617–619, 664–667 (1989).

    Google Scholar 

  3. Smith, D. R., Brown, W. M. & Taylor, O. R. Nature 339, 213–215 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Hall, G. H. & Muralidharan, K. Nature 339, 211–213 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Taylor, O. R. Bull. ent. Soc. Am. 31, 14–24 (1985).

    Google Scholar 

  6. Page, R. E. Jr Nature 339, 181–182 (1989).

    Article  ADS  Google Scholar 

  7. Rinderer, T. E. in Africanized Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C.) 13–28 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  8. Daly, H. & Balling, S. S. J. Kans. Entomol. Soc. 51, 857–869 (1978).

    Google Scholar 

  9. Kerr, W. E. & Bueno, D. Evolution 24, 145–148 (1970).

    Article  Google Scholar 

  10. Rinderer, T. E., Hellmich, R. L. III. Danka, R. G. & Collins, A. M. Science 228, 1119–1121 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Roubik, D. W., Ecology 61, 836–845 (1980).

    Article  Google Scholar 

  12. Sheppard, W. S. & Huettel, M. D. in Africanized Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C.) 281–286 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  13. Sylvester, H. A. J. Apic. Res. 21, 93–97 (1982).

    Article  Google Scholar 

  14. Lobo, J. A., Del Lama, M. A. & Mestriner, M. A. Evolution 43, 794–802 (1989).

    Article  Google Scholar 

  15. Del Lama, M. A., Lobo, J. A., Soares, A. E. E. & Del Lama, S. N. Apidologie 21, 271–280 (1990).

    Article  Google Scholar 

  16. Ruttner, F. in The Hive and the Honey Bee (eds Dadant & Sons) 19–38 (Dadant, Hamilton, Illinois, 1975).

    Google Scholar 

  17. Kerr, W. E., de Leon del Rio, S. & Barrionuevo, M. D. Am. Bee J. 122, 196–197 (1982).

    Google Scholar 

  18. Dietz, A. & Krell, R. Apidologie 16, 99–108 (1985).

    Article  Google Scholar 

  19. Barton, N. H. & Hewitt, G. M. A. Rev. ecol. Syst. 16, 113–148 (1985).

    Article  Google Scholar 

  20. Michener, C. D. A. Rev. Ent. 20, 339–416 (1975).

    Article  Google Scholar 

  21. Taylor, O. R. in Africanized Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C.) 29–41 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  22. Winston, M. L., Otis, G. W. & Taylor, O. R. Jr J. Apic. Res. 18, 85–94 (1979).

    Article  Google Scholar 

  23. Hall, G. H. Genetics 125, 611–621 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Powell, J. R. Proc. natn. Acad. Sci. U.S.A. 80, 492–495 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Marchant, A. D., Arnold, M. L. & Wilkinson, P. Heredity 61, 321–328 (1988).

    Article  Google Scholar 

  26. Hewitt, G. M. Trends Ecol. Evol. 3, 158–167 (1988).

    Article  CAS  Google Scholar 

  27. Sheppard, W. S. Ann. Ent. Soc. Am. 81, 886–889 (1988).

    Article  Google Scholar 

  28. Sheppard, W. S. & McPheron, B. A. in Diversity in Apis (ed. Smith, D. R.) (Westview, Colorado, in the press).

  29. Sheppard, W. S. & Huettel, M. D. Am. Bee J. 127, 851 (1987).

    Google Scholar 

  30. Rinderer, T. E. et al. Ann. Ent. Soc. Am. 83, 346–351 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheppard, W., Rinderer, T., Mazzoli, J. et al. Gene flow between African- and European-derived honey bee populations in Argentina. Nature 349, 782–784 (1991). https://doi.org/10.1038/349782a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349782a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing