Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Xenopus localized messenger RNA An3 may encode an ATP-dependent RNA helicase

Abstract

THE maternal messenger RNA An3 was originally identified localized to the animal hemisphere of Xenopus luevis oocytes, eggs and early embryos1,2Xenopus embryos depend on mRNA and protein present in the egg before fertilization (maternal molecules) to provide the information needed for early development. Localization of maternal mRNA gives cells derived from different regions of the egg distinctive capacities for protein synthesis. We show here that An3 mRNA encodes a protein with 74% identity to a protein encoded by the testes-specific mRNA PLlO found in mouse3, which is proposed to have RNA helicase activity. Because the gene encoding An3 mRNA is reactivated after gastrulation and remains active throughout embryogenesis1,2, we have examined its distribution in embryonic and adult tissues. Unlike PLlO mRNA, which is primarily restricted to the testes, An3 mRNA is broadly dis-tributed in later development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rebagliati, M. R., Weeks, D. L., Harvey, R. P. & Melton, D. A. Cell 42, 769–777 (1985).

    Article  CAS  Google Scholar 

  2. Weeks, D. L., Rebagliati, M. R., Harvey, R. P. & Melton, D. A. Cold Spring Harbor Symp. quant. Biol. 50, 21–30 (1985).

    Article  CAS  Google Scholar 

  3. Leroy, P., Alzari, P., Sassoon, D., Wolgemuth, D. & Fellous, M. Cell 57, 549–559 (1989).

    Article  CAS  Google Scholar 

  4. Trahey, M. et al. Science 242, 1697–1700 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Linder, P. et al. Nature 337, 121–122 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Nielsen, P. J., McMaster, G. K. & Trachsel, H. Nucleic Acids Res. 13, 6867–6880 (1985).

    Article  CAS  Google Scholar 

  7. Linder, P. & Slonimski, P. Proc. natn. Acad. Sci. U.S.A. 86, 2286–2290 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Seraphin, B., Simon, M., Boulet, A. & Faye, G. Nature 337, 84–87 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Doer, D., Christensen, A. & Johnson, D. Nucleic Acids Res. 18, 5489–5494 (1990).

    Article  Google Scholar 

  10. Hay, B., Jan, Lily Yen & Jan, Y. N. Cell 55, 577–587 (1988).

    Article  CAS  Google Scholar 

  11. Lasko, P. F. & Ashburner, M. Nature 335, 611–617 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Ford, M., Anton, I. & Lane, D. Nature 332, 736–738 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Nishi, K., Morel-Deville, F., Hershey, J., Leighton, T. & Schneir, J. Nature 336, 496–498 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Iggo, R. et al. Nucleic Acids Res. 18, 5413–5417 (1990).

    Article  CAS  Google Scholar 

  15. Perry-O'Keefe, H., Kitner, C., Yisreli, J. & Melton, D. A. in In situ Hybridisation: Application to Developmental Biology and Medicine (eds Harris, N. & Williams, D. G.) 115–130 (CUP, Cambridge, 1990).

    Book  Google Scholar 

  16. Richter, J., Smith, D., Anderson, D. & Davidson, E. J. molec. Biol. 173, 227–241 (1984).

    Article  CAS  Google Scholar 

  17. Bass, B. L. & Weintraub, H. Cell 48, 607–613 (1987).

    Article  CAS  Google Scholar 

  18. Rebagliati, M. R. & Melton, D. A. Cell 48, 599–605 (1987).

    Article  CAS  Google Scholar 

  19. Wagner, R. W. et al. Molec. cell. Biol. 10, 5586–5590 (1990).

    Article  CAS  Google Scholar 

  20. Bass, B. L. & Weintraub, H. Cell 55, 1089–1098 (1988).

    Article  CAS  Google Scholar 

  21. Dumont, J. N. J. Morphol. 136, 155–179 (1972).

    Article  Google Scholar 

  22. Nieuwkoop, P. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1967).

    Google Scholar 

  23. Kreig, P. A., Varnum, S. M., Wormington, W. M. & Melton, D. A. Devl Biol. 133, 93–100 (1989).

    Article  Google Scholar 

  24. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  25. Ray, B. K. et al. J. biol. Chem. 260, 7651–7658 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gururajan, R., Perry-O'Keefet, H., Melton, D. et al. The Xenopus localized messenger RNA An3 may encode an ATP-dependent RNA helicase . Nature 349, 717–719 (1991). https://doi.org/10.1038/349717a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349717a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing