Letter | Published:

Demonstration by NMR of folding domains in lysozyme

Abstract

ALTHOUGH there has been much speculation on the pathways of protein folding, only recently have experimental data on the topic been available. The study of proteins under conditions where species intermediate between the fully folded and unfolded states are stable has provided important information, for example about the disulphide intermediates in BPTI1,2, cis/trans proline isomers of RNase A3 and the molten globule state of α-lactalbumin4. An alternative approach to investigating folding pathways has involved detection and characterization of transient conformers in refolding studies using stopped-flow methods coupled with NMR measurements of hydrogen exchange5,6. The formation of intermediate structures has been detected in the early stages of folding of cytochrome c (ref. 7), RNase A8 and barnase9. For α-lactalbumin, hydrogen exchange kinetics monitored by NMR proved to be crucial for identifying native-like structural features in the stable molten globule state10. An analogous partially folded protein stable under equilibrium conditions has not been observed for the structurally homologous protein hen egg-white lysozyme, although there is evidence that a similar but transient state is formed during refolding4–11. Here we describe NMR experiments based on competition between hydrogen exchange and the refolding process which not only support the existence of such a transient species for lysozyme, but enable its structural characteristics to be defined. The results indicate that the two structural domains of lysozyme12,13 are distinct folding domains, in that they differ significantly in the extent to which compact, probably native-like, structure is present in the early stages of folding.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Creighton, T. E. Prog. Biophys. molec. Biol. 33, 231–297 (1978).

  2. 2

    States, D. J., Creighton, T. E., Dobson, C. M. & Karplus, M. J. molec. Biol. 195, 731–739 (1987).

  3. 3

    Schmid, F. X. Biochemistry 22, 4690–4696 (1983).

  4. 4

    Kuwajima, K. Proteins 6, 87–103 (1989).

  5. 5

    Kim, P. S. & Baldwin, R. L. A. Rev. Biochem. 59, 631–660 (1990).

  6. 6

    Roder, H. & Wütrich, K. Proteins 1, 34–42 (1986).

  7. 7

    Roder, H., Elöve, G. A. & Englander, S. W. Nature 335, 700–704 (1988).

  8. 8

    Udgaonkar, J. B. & Baldwin, R. L. Nature 335, 694–699 (1988).

  9. 9

    Bycroft, M., Matouschek, A., Kellis, J. T. Jr, Serrano, L. & Fersht, A. R. Nature 488–490 (1990).

  10. 10

    Baum, J., Dobson, C. M., Evans, P. A. & Hanley, C. Biochemistry 28, 7–13 (1989).

  11. 11

    Kuwajima, K., Hiraoka, Y., Ikeguchi, M. & Sugai, S. Biochemistry 24, 874–881 (1985).

  12. 12

    Janin, J. & Wodak, S. J. Prog. biophys. molec. Biol. 42, 21–78 (1983).

  13. 13

    McCammon, J. A., Gelin, B. R., Karplus, M. & Wolynes, P. G. Nature 262, 325–326 (1976).

  14. 14

    Kim, P. S. Meth. Enzymol. 131, 136–156 (1986).

  15. 15

    Tanford, C., Aune, K. C. & Ikai, A. J. molec. Biol. 73, 185–197 (1973).

  16. 16

    Kato, S., Okamura, M., Simamoto, N. & Utiyama, H. Biochemistry 20, 1080–1085 (1981).

  17. 17

    Kato, S., Shimamoto, N. & Utiyama, H. Biochemistry 21, 38–43 (1982).

  18. 18

    Ikeguchi, M., Kuwajima, K., Mitani, M. & Sugai, S. Biochemistry 25, 6965–6972 (1986).

  19. 19

    Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C. & Rupley, J. A. The Enzymes 3rd edn (ed Boyer, P. D.) 7, 665–867 (Academic, New York, 1972).

  20. 20

    Redfield, C. & Dobson, C. M. Biochemistry 27, 122–136 (1988).

  21. 21

    Pedersen, T. G. et al. J. molec. Biol. 197, 111–130 (1987).

  22. 23

    Topping, K. D. D.Phil. Thesis, University of Oxford, 1988.

  23. 24

    Englander, S. W., Downer, N. W. & Teitelbaum, H. A. Rev. Biochem. 41, 903–924 (1972).

  24. 25

    Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. Proc. R. Soc. Lond. Ser. B 167, 365–377 (1967).

  25. 26

    Privalov, P. L. Adv. Protein Chem. 33, 167–241 (1979).

  26. 27

    Dobson, C. M. & Evans, P. A. Biochemistry 23, 4267–4270 (1984).

  27. 28

    Jeng, M., Englander, S. W., Elöve, G. A., Wand, J. & Roder, H. Biochemistry 29, 10433–10437 (1990).

  28. 29

    Hughson, F. M., Wright, P. E. & Baldwin, R. L. Science 249, 1544–1548 (1990).

  29. 30

    Schmid, F. X. & Baldwin, R. L. J. molec. Biol. 135, 199–215 (1979).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.