Letter | Published:

Activation of Epstein–Barr virus latent genes protects human B cells from death by apoptosis


EPSTEiN-Barr virus (EBV), a human herpesvirus, establishes a persistent asymptomatic infection of the circulating B-lymphocyte pool1–3. The mechanism of virus persistence is not understood but, given the limited lifespan of most B cells in vivo, it seems most likely that EBV-infected cells must gain access to the long-lived memory B-cell pool. Here we show in an in vitro system that EBV, through expression of the full set of eight virus-coded 'latent' proteins, can protect human B cells from programmed cell death (apoptosis), the deletion mechanism which normally restricts entry into memory4. We have found that EBV-positive Burkitt's lym-phoma (BL) cell clones5 retaining the original tumour cell phenotype and expressing only one of the virus latent proteins, the nuclear antigen EBNA 1, are extremely sensitive to apoptosis; in this respect they resemble the tumour's normal cell of origin found in the germinal centres of lymphoid tissue. By contrast, isogenic BL cell clones which have activated expression of all eight EBV latent proteins are resistant to the induction of apoptosis. The EBV latent proteins should therefore be seen not just as activators of B-cell proliferation but, perhaps more importantly, as mediators of enhanced B-cell survival.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Nilsson, K., Klein, G., Henle, W. & Henle, G. Int. J. Cancer 8, 443–450 (1971).

  2. 2

    Gratama, J. W. et al. Proc. natn. Acad. Sci. U.S.A. 85, 8693–8696 (1988).

  3. 3

    Yao, Q. Y., Ogan, P., Rowe, M., Wood, M. & Rickinson, A. B. Int. J. Cancer 43, 67–71 (1989).

  4. 4

    Liu, Y-J. et al. Nature 342, 929–931 (1989).

  5. 5

    Gregory, C. D., Rowe, M. & Rickinson, A. B. J. gen. Virol. 71, 1481–1495 (1990).

  6. 6

    Rowe, M. et al. Int. J. Cancer 35, 435–442 (1985).

  7. 7

    Rooney, C. M. et al. J. natn. Cancer Inst. 77, 681–687 (1986).

  8. 8

    Rowe, M. et al. EMBO J. 6, 2743–2751 (1987).

  9. 9

    Wyllie, A. H. Int. Rev. Cytol. 68, 252–305 (1981).

  10. 10

    Wyllie, A. H. Nature 284, 555–556 (1980).

  11. 11

    McConkey, D. J., Orrenius, S. & Jondal, M. Immun. Today 11, 120–121 (1990).

  12. 12

    Smith, C. A., Williams, G. T., Kingston, R., Jenkinson, E. J. & Owen, J. J. T. Nature 337, 181–184 (1989).

  13. 13

    Wyllie, A. H., Morris, R. G., Smith, A. L. & Dunlop, D. J. Path. 142, 67–77 (1984).

  14. 14

    Calender, A. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8060–8064 (1987).

  15. 15

    Berard, C. W. in Burkitt's Lymphoma: A Human Cancer Model IARC Scient. Pub. No. 60 (eds Lenoir, G., O'Connor, G. & Olweny, C. L. M.) 31–35 (IARC, Lyon, 1985).

  16. 16

    Mann, R. B. et al. New Engl. J. Med. 295, 685–691 (1976).

  17. 17

    Gregory, C. D. et al. J. Immun. 139, 313–318 (1987).

  18. 18

    MacLennan, I. C. M., Liu, Y-J., Oldfield, S., Zhang, J. & Lane, P. J. L. Curr. Topics microbiol. immun. 159, 37–63 (1990).

  19. 19

    Pennell, C. A. & Scott, D. W. Eur. J. Immun. 16, 1577–1581 (1986).

  20. 20

    Hasbold, J. & Klaus, G. G. B. Eur. J. Immun. 20, 1685–1690 (1990).

  21. 21

    Yates, J., Warren, N., Reisman, D. & Sugden, B. Proc. natn. Acad. Sci. U.S.A. 81, 3806–3810 (1984).

  22. 22

    McConkey, D. J., Hartzell, P., Duddy, S. K., Hakansson, H. & Orrenius, S. Science 242, 256–258 (1989).

  23. 23

    Arends, M. J., Morris, R. G. & Wyllie, A. H. Am. J. Path. 136, 593–608 (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.