Letter | Published:

GABAB autoreceptors regulate the induction of LTP

Abstract

UNDERSTANDING the mechanisms involved in long-term potenti-ation (LTP) should provide insights into the cellular and molecular basis of learning and memory in vertebrates1. It has been established that in the CA1 region of the hippocampus the induction of LTP requires the transient activation of the N-methyl-D-aspartate (NMDA) receptor system2. During low-frequency transmission, significant activation of this system is prevented by γ-aminobutyric acid (GABA) mediated synaptic inhibition3,4 which hyperpolarizes neurons into a region where NMDA receptor-operated channels are substantially blocked by Mg2+ (refs. 5, 6). But during high-frequency transmission, mechanisms are evoked that provide sufficient depolarization of the postsynaptic membrane to reduce this block7 and thereby permit the induction of LTP. We now report that this critical depolarization is enabled because during high-frequency transmission GABA depresses its own release by an action on GABAB autoreceptors, which permits sufficient NMDA receptor activation for the induction of LTP. These findings demonstrate a role for GABAB receptors in synaptic plasticity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bliss, T. V. P. & Lynch, M. A. Neurol Neurobiol. 35, 3–72 (1988).

  2. 2

    Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

  3. 3

    Dingledine, R., Hynes, M. A. & King, G. L., J. Physiol., Lond. 380, 175–189 (1986).

  4. 4

    Collingridge, G. L., Herron, C. E. & Lester, R. A. J. J. Physiol., Lond. 399, 283–300 (1988).

  5. 5

    Ascher, P. & Nowak, L. J. Physiol., Lond. 399, 247–266 (1988).

  6. 6

    Mayer, M. L. & Westbrook, G. L. J. Physiol., Lond. 361, 65–90 (1985).

  7. 7

    Collingridge, G. L., Herron, C. E. & Lester, R. A. J. J. Physiol., Lond. 399, 301–312 (1988).

  8. 8

    Ben-Ari, Y., Krnjevic, K. & Reinhardt, W. Can. J. Physiol. Pharmacol. 57, 1462–1466 (1979).

  9. 9

    McCarren, M. & Alger, B. E. J. Neurophysiol. 53, 557–571 (1985).

  10. 10

    Harrison, N. L. J. Physiol., Lond. 422, 433–446 (1990).

  11. 11

    Davies, C. H., Davies, S. N. & Collingridge, G. L. J. Physiol., Lond. 424, 513–531 (1990).

  12. 12

    Olpe, H.-R. et al. Eur. J. Pharmac. 187, 27–38 (1990).

  13. 13

    Larson, J. & Lynch, G. Brain Res. 441, 111–118 (1988).

  14. 14

    Diamond, D. M., Dunwiddie, T. V. & Rose, G. M. J. Neurosci. 8, 4079–4088 (1988).

  15. 15

    Coan, E. J. & Collingridge, G. L. Neurosci. Lett. 53, 21–26 (1985).

  16. 16

    Lanthorn, T. H. & Cotman, C. W. Brain Res. 225, 171–178 (1981).

  17. 17

    Randall, A. D., Schofield, J. G., Davies, C. H. & Collingridge, G. L. J. Physiol., Lond. 426, 51P (1990).

  18. 18

    Dutar, P. & Nicoll, R. A. Nature 332, 156–158 (1988).

  19. 19

    Dutar, P. & Nicoll, R. A. Neuron 1, 585–591 (1988).

  20. 20

    Wigström, H. & Gustafsson, B. Nature 301, 603–604 (1983).

  21. 21

    Mott, D. D., Lewis, D. V., Ferrari, C. M., Wilson, W. A. & Swartzwelder, H. S. Neurosci. Lett. 113, 222–226 (1990).

  22. 22

    Olpe, H.-R. & Karlsson, G. Naunyn-Schmiedebergs Archs Pharmak. 342, 194–197 (1990).

  23. 23

    Deisz, R. A. & Prince, D. A. J. Physiol., Lond. 412, 513–542 (1989).

  24. 24

    Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Neuron 1, 911–917 (1988).

  25. 25

    Muller, D., Joly, M. & Lynch, G. Science 242, 1694–1697 (1988).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.