Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Requirement for the replication protein SSB in human DMA excision repair

Abstract

REPLICATIONand repair are essential processes that maintain the continuity of the genetic material. Dissection of simian virus 40 (SV40) DNA replication has resulted in the identification of many eukaryotic replication proteins, but the biochemistry of the multienzyme process of DNA excision repair is less well defined. One protein that is absolutely required for semiconservative replication of SV40 DNA in vitro is human single-stranded DNA-binding protein (SSB, also called RF-A and RP-A)1–3. SSB consists of three polypeptides of relative molecular mass 70,000, 34,000 and 13,000, and acts with T antigen and topoisomerases to unwind DNA, allowing the access of other replication proteins. Human SSB can also stimulate the activity of polymerases α and δ, suggesting a further role in elongation during DNA replication4–6. We have now found a role for human SSB in DNA excision repair using a cell-free system that can carry out nucleotide excision repair in vitro7. Monoclonal antibodies against human SSB caused extensive inhibition of DNA repair in plasmid molecules damaged by ultraviolet light or acetylaminofluorene. Addition of purified SSB reversed this inhibition and further stimulated repair synthesis by increasing the number of repair events. These results show that a mammalian DNA replication protein is also essential for repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wobbe, C. R. et al. Proc. natn. Acad. Sci. U.S.A. 84, 1834–1838 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Fairman, M. P. & Stillman, B. EMBO J. 7, 1211–1218 (1988).

    Article  CAS  Google Scholar 

  3. Wold, M. S. & Kelly, T. Proc. natn. Acad. Sci. U.S.A. 85, 2523–2527 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Kenny, M. K., Lee, S.-H. & Hurwitz, J. Proc. natn. Acad. Sci. U.S.A. 86, 9757–9761 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Tsurimoto, T. & Stillman, B. EMBO J. 8, 3883–3889 (1989).

    Article  CAS  Google Scholar 

  6. Kenny, M. K., Schlegel, U., Furneaux, H. & Hurwitz, J. J. biol. Chem. 265, 7693–7700 (1990).

    CAS  Google Scholar 

  7. Wood, R. D., Robins, P. & Lindahl, T. Cell 53, 97–106 (1988).

    Article  CAS  Google Scholar 

  8. Manley, J. L., Fire, A., Cano, A., Sharp, P. A. & Gefter, M. L. Proc. natn. Acad. Sci. U.S.A. 77, (1980).

  9. Wood, R. D. Biochemistry, 28, 8287–8292 (1989).

    Article  CAS  Google Scholar 

  10. Hansson, J. & Wood, R. D. Nucleic Acids Res. 17, 8073–8091 (1989).

    Article  CAS  Google Scholar 

  11. Sibghat-Ullah, Husain, I. & Sancar, A. Nucleic Acids Res. 17, 4471–4484 (1989).

    Article  CAS  Google Scholar 

  12. Hansson, J., Munn, M., Rupp, W. D., Kahn, R. & Wood, R.D. J. biol. Chem. 264, 21788–21792 (1989).

    CAS  PubMed  Google Scholar 

  13. Cleaver, J. E. & Kraemer, K. H. in The Metabolic Basis of Inherited Disease 6th Edn (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2949–2971 (McGraw-Hill, New York, 1989).

    Google Scholar 

  14. Hansson, J., Grossman, L., Lindahl, T. & Wood, R. D. Nucleic Acids Res. 18, 35–40 (1990).

    Article  CAS  Google Scholar 

  15. Ikeda, J.-E., Enomoto, T. & Hurwitz, J. Proc. natn. Acad. Sci. U.S.A. 78, 884–888 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Wood, R. D., Lindahl, T. & Robins, P. in Mechanisms and Consequences of DNA Damage Processing (eds Friedberg, E. C. & Hanawalt, P.) 57–61 (Liss, New York, 1988).

    Google Scholar 

  17. Tanaka, K. et al. Nature 343, 73–76 (1990).

    Article  ADS  Google Scholar 

  18. Weeda, G. et al. Cell 62, 777–791 (1990).

    Article  CAS  Google Scholar 

  19. Nishida, C., Reinhard, P. & Linn, S. J. biol. Chem. 263, 501–510 (1988).

    CAS  PubMed  Google Scholar 

  20. Toulmé, J. J., Behmoaras, T., Guigues, M. & Hélène, C. EMBO J. 2, 505–510 (1983).

    Article  Google Scholar 

  21. Van Houten, B. Microbiol. Rev. 54, 18–51 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Caron, P. R., Kushner, S. R. & Grossman, L. Proc. natn. Acad. Sci. U.S.A. 82, 4925–4929 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Husain, I., Van Houten, B., Thomas, D. C., Abdel-Monem, M. & Sancar, A. Proc. natn. Acad. Sci. U.S.A. 82, 6774–6778 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coverley, D., Kenny, M., Munn, M. et al. Requirement for the replication protein SSB in human DMA excision repair. Nature 349, 538–541 (1991). https://doi.org/10.1038/349538a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349538a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing