Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial distribution of visible lightning on Jupiter

Abstract

SPACECRAFT observations have provided evidence for the existence of lightning on Venus1–3, Jupiter4,5, Saturn6,7 and Uranus8. Little is known, however, about the global distribution of lightning on these planets because of the limited spatial resolution and areal coverage of these previous detections, which have principally involved radio-frequency measurements. Two long-exposure images obtained by the Voyager 1 spacecraft of a small area on the nightside of Jupiter have provided the only previously studied imaging observations of lightning on another planet9,10. Here we present an analysis of all suitable Voyager images of Jupiter and evaluate the horizontal spatial distribution of visible lightning over most of one hemisphere. Essentially all the detectable activity is confined to very narrow latitude bands at 13.5° N and 49° N. The active regions at 49° N are the brightest, most numerous and periodic in longitude. Activity at this latitude is long-lived and is most likely associated with moist convective regions deep in Jupiter's atmosphere. The longitudinal periodicity of the lightning storms may represent the effects of a planetary scale atmospheric wave trapped at the depth of the moist convection11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krasnopolsky, V. A. in Venus (University of Arizona Press, 1983).

    Google Scholar 

  2. Ksanfomality, L. V., Scarf, F. L. & Taylor, W. L. in Venus (University of Arizona Press, 1983).

    Google Scholar 

  3. Russell, C. T., von Dornum, M. & Scarf, F. L. Icarus 80, 390–415 (1989).

    Article  ADS  Google Scholar 

  4. Smith, B. A. et al. Science 204, 951–971 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Gurnett, D. A., Shaw, R. R., Anderson, R. R., Kurth, W. S. & Scarf, F. L. Geophys. Res. Lett. 6, 511–514 (1979).

    Article  ADS  Google Scholar 

  6. Burns, J. A., Showalter, M. R., Cuzzi, J. N. & Durisen, R. H. Icarus 54, 280–295 (1983).

    Article  ADS  Google Scholar 

  7. Kaiser, M. L., Connerney, J. E. P. & Desch, M. D. Nature 303, 50–53 (1983).

    Article  ADS  Google Scholar 

  8. Zarka, P. & Pedersen, B. M. Nature 323, 605–608 (1986).

    Article  ADS  Google Scholar 

  9. Cook, A. F. II, Duxbury, T. C. & Hunt, G. E. Nature 280, 794 (1979).

    Article  ADS  Google Scholar 

  10. Borucki, W. J., Bar-Nun, A., Scarf, F. L., Cook, A. F. II & Hunt, G. E. Icarus 52, 492–502 (1982).

    Article  ADS  Google Scholar 

  11. Hunt, G. E., Conrath, B. J. & Pirraglia, J. A. J. geophys. Res. 86, 8777–8781 (1981).

    Article  ADS  Google Scholar 

  12. Allison, M. Icarus 83, 282–307 (1990).

    Article  ADS  Google Scholar 

  13. Borucki, W. J., McKenzie, R. L., McKay, C. P., Duong, N. D. & Boac, D. S. Icarus 64, 221–232 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Danielson, G. E., Kupferman, P. N., Johnson, T. V. & Soderblom, L. A. J. geophys. Res. 86, 8683–8691 (1981).

    Article  ADS  Google Scholar 

  15. Ness, N. F., Acuña, M. H., Leeping, R. P., Burlaga, L. F. & Behannon, K. W. Science 204, 982–987 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Dennis, A. S. J. atmos. Sci. 27, 170–172 (1970).

    Article  ADS  Google Scholar 

  17. Turman, B. N. J. geophys. Res. 82, 2566–2568 (1977).

    Article  ADS  Google Scholar 

  18. Orville, R. E. & Henderson, R. W. Mon. Wea. Rev. 114, 2640–2653 (1986).

    Article  ADS  Google Scholar 

  19. Williams, E. R. J. geophys. Res. 90, 6013–6025 (1985).

    Article  ADS  Google Scholar 

  20. Flasar, F. M. Icarus 65, 280–303 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Gierasch, P. J. & Conrath, B. J. in Recent Advances in Planetary Meteorology 121–146 (Cambridge University Press, 1985).

    Google Scholar 

  22. Del Genio, A. D. & McGrattan, K. B. Icarus 84, 29–53 (1990).

    Article  ADS  Google Scholar 

  23. Borucki, W. J. & Williams, M. A. J. geophys. Res. 91, 9893–9903 (1986).

    Article  ADS  Google Scholar 

  24. West, R. A., Strobel, D. F. & Tomasko, M. G. Icarus 65, 161–217 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Ingersoll, A. P. et al. Nature 280, 773–775 (1979).

    Article  ADS  Google Scholar 

  26. Magalhāes, J. A., Weir, A. L., Conrath, B. J., Gierasch, P. J. & Leroy, S. S. Nature 337, 444–447 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magalhães, J., Borucki, W. Spatial distribution of visible lightning on Jupiter. Nature 349, 311–313 (1991). https://doi.org/10.1038/349311a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349311a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing