Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport properties governed by surface barriers in Bi2Sr2CaCu2O8

Abstract

One of the most common investigation techniques of type-II superconductors is the transport measurement, in which an electrical current is applied to a sample and the corresponding resistance is measured as a function of temperature and magnetic field. At temperatures well below the critical temperature, Tc, the resistance of a superconductor is usually immeasurably low. But at elevated temperatures and fields, in the so-called vortex liquid phase, a substantial linear resistance is observed1. In this dissipative state, which in anisotropic high-temperature superconductors like Bi2Sr2CaCu2O8 may occupy most of the mixed-state phase diagram, the transport current is usually assumed to flow uniformly across the sample as in a normal metal. To test this assumption, we have devised a measurement approach which allows determination of the flow pattern of the transport current across the sample. The surprising result is that, in Bi2Sr2CaCu2O8 crystals, most of the current flows at the edges of the sample rather than in the bulk, even in the highly resistive state, due to the presence of strong surface barriers. This finding has significant implications for the interpretation of existing resistivity data and may be of importance for the development of high-temperature superconducting wires and tapes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Schematic cross-section of the sample with the attached Hall sensors (left) and the corresponding field profiles Bac(x) at three temperatures (right).
Figure 3: Self-induced field Bac(x) generated by 4 mA a.c. current as a function of the temperature during cooling of the Bi2Sr2CaCu2O8 crystal in a field Hdc = 0.1 T.
Figure 4: Resistance of Bi2Sr2CaCu2O8 crystal as a function of temperature at the indicated applied fields (Iac = 10 mA)..

Similar content being viewed by others

References

  1. Huse, D. A., Fisher, P. A. & Fisher, D. S. Are superconductors really superconducting? Nature 358, 553–559 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Zeldov, E.et al. Thermodynamic observation of first-order vortex-lattice melting transition. Nature 375, 373–376 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Fuchs, D. T.et al. Simultaneous resistivity onset and first-order vortex-lattice phase transition in Bi2Sr2CaCu2O8. Phys. Rev. B 54, R796–R799 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Purcell, E. M. Electricity and Magnetism (McGraw-Hill, Singapore, 1985).

    Google Scholar 

  5. Brandt, E. H. & Indenbom, M. Type-II-superconductor strip with current in perpendicular magnetic field. Phys. Rev. B 48, 12893–12906 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Zeldov, E., Clem, J. R., McElfresh, M. & Darwin, M. Magnetization and transport currents in thin superconducting films. Phys. Rev. B 49, 9802–9822 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Bean, C. P. & Livingston, J. D. Surface barriers in Type-II superconductors. Phys. Rev. Lett. 12, 14–16 (1964).

    Article  ADS  Google Scholar 

  8. Zeldov, E.et al. Geometrical barriers in high-temperature superconductors. Phys. Rev. Lett. 73, 1428–1431 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Chikumoto, N., Konczykowski, M., Motohira, N. & Malozemoff, A. P. Flux-creep crossover and relaxation over surface barriers in Bi2Sr2CaCu2O8crystals. Phys. Rev. Lett. 69, 1260–1263 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Konczykowski, M., Burlachkov, L. I., Yeshurun, Y. & Holtzberg, F. Evidence for surface barriers and their effect on irreversibility and lower critical field measurements in Y-B-CU-O crystals. Phys. Rev. B 43, 13707–13710 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Zeldov, E.et al. Nature of the irreversibility line in Bi2Sr2CaCu2O8. Europhys. Lett. 30, 367–372 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Burlachkov, L., Koshelev, A. E. & Vinokur, V. M. Transport properties of high temperature superconductors: Surface vs bulk effect. Phys. Rev. B 54, 6750–6757 (1996).

    Article  ADS  CAS  Google Scholar 

  13. White, W. R., Kapitulnik, A. & Beasley, M. R. Collective vortex motion in a-MoGe superconducting thin-films. Phys. Rev. Lett. 70, 670–673 (1993).

    Article  ADS  CAS  Google Scholar 

  14. D'Anna, G.et al. Vortex-motion-induced voltage noise in YBa2Cu3O7−dsingle crystals. Phys. Rev. Lett. 75, 3521–3524 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Gordeev, S. N.et al. Current-induced organization of vortex motion in Type-II superconductors. Nature 385, 324–326 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Manhart, J.et al. Spatially resolved observation of supercurrents across grain boundaries in YBaCuO films. Science 245, 839–841 (1989).

    Article  ADS  Google Scholar 

  17. McElfresh, M.et al. Local time dependent magnetization of superconducting films in presence of transport current. Phys. Rev. B 51, 9111–9117 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Indenbom, M. V., Forkl, A., Kronmüller, H. & Habermeier, H.-U. Critical-current in YBCO thin-film bridge studied using magnetooptic technique. J. Supercond. 6, 173–178 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Welp, U.et al. Imaging of transport currents in superconducting (Bi, Pb)2Sr2Ca2Cu3Oxcomposites. Nature 376, 44–46 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F. & Waszczak, J. V. Thermally activated dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ. Phys. Rev. Lett. 61, 1662–1665 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Busch, R., Ries, G., Werthner, H., Krieselmayer, G. & Saemann-Ischenko, G. New aspects of the mixed state from 6-terminal measurements on Bi2Sr2CaCu2Oxsingle-crystals. Phys. Rev. Lett. 69, 522–525 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Koshelev, A. E. Mechanism of thermally activated c-axis dissipation in layered high-Tc superconductors at high fields. Phys. Rev. Lett. 76, 1340–1343 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Tsuboi, T., Hanaguri, T. & Maeda, A. Nature of the vortex liquid in Bi2Sr2CaCu2Oy. Phys. Rev. B 55, R8709–R8712 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Watauchi, S.et al. Observation of resistivity drops and the vortex phase-diagram in Bi2Sr2CaCu2Oy. Physica C 259, 373–378 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Fuchs, D. T.et al. Resistive evidence for vortex-lattice sublimation in Bi2Sr2CaCu2O8. Phys. Rev. B 55, R6156–R6159 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Safar, H., Gammel, P. L., Huse, D. A. & Bishop, D. J. Experimental-evidence for a 1st-order vortex-lattice-melting. Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Kwok, W. K.et al. Vortex lattice melting in untwinned and twinned single-crystals of YBa2Cu3O7−δ. Phys. Rev. Lett. 69, 3370–3373 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Konczykowski, R. Doyle, V. Kogan, M. McElfresh and A. Koshelev for discussions. This work was supported by the Israel Ministry of Science, the German-Israeli Foundation for Scientific Research and Development (GIF), the MINERVA foundation (Munich, Germany), the Alhadeff Research Award, and the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan T. Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, D., Zeldov, E., Rappaport, M. et al. Transport properties governed by surface barriers in Bi2Sr2CaCu2O8. Nature 391, 373–376 (1998). https://doi.org/10.1038/34879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34879

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing