Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geological evidence for solid-state convection in Europa's ice shell


The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today1. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer2,3,4,5. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean6,7. Here we report on the morphology and geological interpretation of distinct surface features—pits, domes and spots—discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pits, domes and spots of various specific morphologies (shown to a common scale) on the surface of Europa.
Figure 2: Effective viscosity ηeff of ice as a function of temperature T, strain rate ε̇,and grain size d. for conditions relevant to the subsurface of Europa.


  1. Carr, M. al. Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Cassen, P. M., Peale, S. J. & Reynolds, R. T. in Satellites of Jupiter (ed. Morrison, D.) 93–128 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

  3. Squyres, S. W., Reynolds, R. T., Cassen, P. & Peale, S. J. Liquid water and active resurfacing on Europa. Nature 301, 225–226 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Ross, M. & Schubert, G. Tidal heating in an internal ocean model of Europa. Nature 325, 133–134 (1987).

    Article  ADS  Google Scholar 

  5. Ojakangas, G. W. & Stevensonn, D. J. Thermal state of an ice shell on Europa. Icarus 81, 220–241 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Lucchitta, B. K. & Soderblomm, L. A. in Satellites of Jupiter (ed. Morrison, D.) 521–555 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

  7. Carr, M. H. et al. The Galileo Imaging Team plan for observing the satellites of Jupiter. J. Geophys. Res. 100, 18935–18955 (1995).

    Article  ADS  Google Scholar 

  8. Greeley, al. Europa triple bands: Galileo images. Lunar Planet. Sci. Conf. Abstr. 28, 455–456 (1997).

    ADS  Google Scholar 

  9. Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368–390 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Jenyon, M. K. Salt Tectonics (Elsevier, New York, 1986).

    Google Scholar 

  11. O'Brien, G. D. Mem. Am. Assoc. Petrol. Geol. 8, 1–9 (1968).

    Google Scholar 

  12. Schenk, P. & Jackson, M. P. A. Diapirism on Triton: A record of crustal layering and instability. Geology 21, 299–302 (1993).

    Article  ADS  Google Scholar 

  13. Schubert, G., Spohn, T. & Reynoldss, R. T. in Satellites (eds Burns, J. A. & Matthews, M. S.) 224–292 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  14. Reynolds, R. T. & Cassen, P. M. On the internal structure of the major satellites of the outer planets. Geophys. Res. Lett. 6, 121–124 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Goldsby, D. L. & Kohlstedt, D. L. Flow of ice I by dislocation, grain boundary sliding, and diffusion processes. Lunar Planet. Sci. Conf. Abstr. 28, 429–430 (1997).

    ADS  Google Scholar 

  16. Goldsby, D. L. & Kohlstedt, D. L. Grain boundary sliding in fine-grained ice I. Scripta Mat. 37, 1399–1406 (1997).

    Article  CAS  Google Scholar 

  17. Stengel, K. C., Oliver, D. S. & Booker, J. R. Onset of convection in a variable viscosity fluid. J. Fluid Mech. 120, 411–431 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Mueller, S. & McKinnon, W. B. Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution. Icarus 76, 437–464 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Hobbs, P. V. Ice Physics (Clarendon, Oxford, 1974).

    Google Scholar 

  20. Squyres, S. W. & Croft, S. K. in Satellites (eds Burns, J. A. & Matthews, M. S.) 293–341 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  21. Greenberg, R., Geissler, P., Pappalardo, R. & Galileo Imagging Team. Long term and ‘diurnal’ tidal stresses on Europa. Lunar Planet. Sci. Conf. Abstr. 28, 457–458 (1997).

    ADS  Google Scholar 

  22. Geissler, P. al. Evidence for non-synchronous rotation of Europa Nature 391, 368–370 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Ojakangas, G. W. & Stevenson, D. J. Polar wander of an ice shell on Europa. Icarus 81, 242–270 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Geissler, P. E., Phillips, C. & Denk, T. in Proc. Workshop on Remote Sensing of Planetary Ices: Earth and Other Solid Bodies 8.5 (1997).

    Google Scholar 

  25. Pappalardo, al. Deformation and properties of Europa's lithosphere. Eos 78, S203 (1996).

    Google Scholar 

  26. Williams, K. al. Estimates of ice thickness on Europa. Eos 78, F415–F416 (1997).

    Google Scholar 

  27. McKinnon, W. B. Convective instabilities in Europa's floating ice shell. Bull. Am. Astron. Soc. 29, 984 (1997).

    ADS  Google Scholar 

  28. Anderson, J. al. Europa's differentiated internal structure: Inferences from two Galileo encounters. Science 276, 1236–1239 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Durham, W. B., Kirby, S. H. & Stern, L. A. Effects of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res. 97, 20883–20897 (1992).

    Article  ADS  Google Scholar 

Download references


We thank W. McKinnon and N. Sleep for reviews; N. Sherman, L. Prockter and G. Collins for their contributions; and J. Kaufman, K. Magee and K. Klaasen for their efforts in acquisition of the E6 Europa imaging data. This work was supported by NASA's Galileo Project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. T. Pappalardo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pappalardo, R., Head, J., Greeley, R. et al. Geological evidence for solid-state convection in Europa's ice shell. Nature 391, 365–368 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing