Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of fluids in transport and fractionation of uranium and thorium in magmatic processes

Abstract

THE geochemistry of uranium and thorium is of considerable importance for understanding the Earth's heat budget1,2, for U–Th–Pb age determinations3, for the origin of ore deposits4–6, and because disequilibria between the radioactive daughters of 238U and 232Th provide constraints on processes occurring during the generation of magmas7–14. We have studied experimentally the partitioning of uranium and thorium between a haplogranitic melt and aqueous fluids containing variable amounts of HCl, HF and CO2, at 2 kbar, 750 °C and the oxygen fugacity of the Ni–NiO buffer. The partition coefficients Kfluid/meltD are very low for both uranium and thorium if water is the only volatile component present, but they increase strongly with increasing fluoride concentration, indicating the formation of fluoride complexes in the fluid. Chloride and CO2, on the other hand, form complexes with uranium, but not with thorium. These results explain the origin of hydrothermal uranium and thorium deposits, the fractionation of uranium from thorium during magma formation, and the depletion of uranium relative to thorium in granulite-facies rocks.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. & White, W. M. Nature 306, 431–436 (1983).

    ADS  CAS  Article  Google Scholar 

  2. Galer, S. J. G. & O'Nions, R. K. Nature 316, 778–782 (1985).

    ADS  CAS  Article  Google Scholar 

  3. Whitehouse, M. J. Geochim. cosmochim. Acta 53, 717–724 (1989).

    ADS  CAS  Article  Google Scholar 

  4. Ashley, P. M. Mineral. Deposita 19, 7–18 (1984).

    ADS  CAS  Article  Google Scholar 

  5. Simpson, P. R., Brown, G. C., Plant, J. & Ostle, D. Phil. Trans. R. Soc. A291, 385–412 (1979).

    ADS  CAS  Article  Google Scholar 

  6. von Backström, J. W. & Jacob, R. E. Phil. Trans. R. Soc. A291, 307–319 (1979).

    ADS  Article  Google Scholar 

  7. Williams, R. W., Gill, J. B. & Bruland, K. W. Geochim. cosmochim. Acta 50, 1249–1259 (1986).

    ADS  CAS  Article  Google Scholar 

  8. Newman, S., Finkel, R. C. & MacDougall, J. D. Geochim. cosmochim. Acta 48, 315–324 (1984).

    ADS  CAS  Article  Google Scholar 

  9. Krishnaswami, S., Turekian, K. K. & Bennet, J. T. Geochim. cosmochim. Acta 48, 505–511 (1984).

    ADS  CAS  Article  Google Scholar 

  10. Condomines, M., Hemond, C. & Allegre, C. J. Earth planet Sci. Lett. 90, 243–262 (1988).

    ADS  CAS  Article  Google Scholar 

  11. Villemant, B. & Flehoc, C. Earth planet. Sci. Lett. 91, 312–326 (1989).

    ADS  CAS  Article  Google Scholar 

  12. Condomines, M. et al. Nature 325, 607–609 (1987).

    ADS  CAS  Article  Google Scholar 

  13. Newman, S., Macdougall, J. D. & Finkel, R. C. Contrib. Miner. Petrol. 93, 195–206 (1986).

    ADS  CAS  Article  Google Scholar 

  14. Sigmarsson, O., Condomines, M., Morris, J. D. & Harmon, R. S. Nature 346, 163–165 (1990).

    ADS  CAS  Article  Google Scholar 

  15. Candela, P. A. & Holland, H. D. Geochim. cosmochim. Acta 48, 373–380 (1984).

    ADS  CAS  Article  Google Scholar 

  16. Urabe, T. Econ. Geol. 80, 148–157 (1985).

    CAS  Article  Google Scholar 

  17. Webster, J. D., Holloway, J. R. & Hervig, R. L. Econ. Geol. 84, 116–134 (1989).

    CAS  Article  Google Scholar 

  18. Langmuir, D. Geochim. cosmochim. Acta 42, 547–569 (1978).

    ADS  CAS  Article  Google Scholar 

  19. Silver, L. T. Epstein 70th Birthday Symp. abstracts with program, 107–109 (California Institute of Technology, Pasadena, 1989).

    Google Scholar 

  20. Scharbert, H. G., Korkisch, J. & Steffan, I. Tschermaks Mineratog. Petrog. Mitt. 23, 223–232 (1976).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keppler, H., Wyllie, P. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature 348, 531–533 (1990). https://doi.org/10.1038/348531a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348531a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing