Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for multinuclear metal-ion complexes at solid/water interfaces from X-ray absorption spectroscopy

Abstract

METALS dissolved in natural waters often become sorbed onto oxide or clay minerals, so that prediction of their chemical behaviour and transport properties requires knowledge of the structure and bonding of metal species at the solid/water interface1. For many sorption systems, X-ray absorption spectroscopy (XAS) can be used to determine the identity and number of nearest-neighbour atoms and interatomic distances in aqueous complexes on solid surfaces, and thus to identify the dominant type of surface complex and the partitioning mechanism2. Here we describe an XAS study of divalent cobalt (Co(II)) complexes sorbed on three different solids, γ-Al2O3, rutile (TiO2) and kaolinite (Al2Si2O5(OH)4). We find direct evidence for the presence of multinuclear sorption complexes at surface coverages below one monolayer of Co(II) atoms. Our spectroscopic data reveal distinct differences in the number of coordinating atoms and interatomic distances in the surface complexes formed on each of the solids at the same sorption density. These results suggest that different oxide and clay surfaces influence the structure and properties of aqueous surface complexes, and therefore must be accounted for in models of metal-ion sorption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parks, G. A. Chem. Aust. 49, 389–395 (1981).

    Google Scholar 

  2. Sposito, G. Chimia 43, 169–176 (1989).

    CAS  Google Scholar 

  3. James, R. O. & Healy, T. W. J. Colloid Interface Sci. 40, 53–64 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Matijevic, E. J. Colloid Interface Sci. 43, 217–245 (1983).

    Article  ADS  Google Scholar 

  5. Tripathi, V. S. thesis, Stanford Univ. (1983).

  6. Farley, K. J., Dzombak, D. A. & Morel, F. M. M. J. Colloid Interface Sci. 106, 226–242 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Tewari, P. H. & Lee, W. J. Colloid Interface Sci. 52, 77–88 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Bleam, D. F. & McBride, M. B. J. Colloid Interface Sci. 103, 124–132 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Motschi, H. in Aquatic Surface Chemistry (ed. Stumm, W.) 111–125 (Wiley, New York, 1987).

    Google Scholar 

  10. Sposito, G. Surface Chemistry of Soils (Oxford University Press, New York, 1984).

    Google Scholar 

  11. Davis, J. A., James, R. O. & Leckie, J. O. J. Colloid Interface Sci. 63, 480–499 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Brown, G. E. Jr & Parks, G. A. Rev. Geophys. 27, 519–533 (1989).

    Article  ADS  Google Scholar 

  13. Brown, G. E. Jr, Parks, G. A. & Chisholm-Brause, C. J. Chimia 43, 248–256 (1989).

    CAS  Google Scholar 

  14. Chisholm-Brause, C. J. et al. Geochim. cosmochim. Acta 54, 1897–1909 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Hayes, K. F. et al. Science 238, 783–786 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Teo, B-K. & Lee, P. A. J. Am. chem. Soc. 101, 2815–2832 (1979).

    Article  CAS  Google Scholar 

  17. Stern, E. A. in X-ray Absorption (eds Kroningsberger, D. C. & Prins, R.) 3–51 (Wiley, New York, 1988).

    Google Scholar 

  18. Brown, G. E. Jr, Calas, G., Waychunas, G. A. & Petiau, J. in Spectroscopic Methods in Mineralogy and Geology (ed. Hawthorne, F. C.) 431–512 (Miner. Soc. Am., Chelsea, Michigan, 1988).

    Book  Google Scholar 

  19. Heald, S. M. in X-ray Absorption (eds Kroningsberger, D. C. & Prins, R.) 87–118 (Wiley, New York, 1988).

    Google Scholar 

  20. Cramer, S. P. & Hodgson, K. O. Prog. inorg. Chem. 25, 1–39 (1979).

    CAS  Google Scholar 

  21. Sayers, D. C. & Bunker, B. A. in X-ray Absorption (eds Kroningsberger, D. C. & Prins, R.) 211–253 (Wiley, New York, 1988).

    Google Scholar 

  22. Waychunas, G. A., Brown, G. E. Jr & Apted, M. J. Phys. Chem. Miner 13, 31–47 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Cramer, S. P., Hodgson, K. O., Stiefel, E. I. & Newton, W. E. J. Am. chem. Soc. 100, 1144–1150 (1983).

    Google Scholar 

  24. Co, M. S., Hendrickson, W. A., Hodgson, K. O. & Doniach, S. J. Am. chem. Soc. 105, 2748–2761 (1978).

    Google Scholar 

  25. O'Day, P. A., Brown, G. E. Jr & Parks, G. A. in Proc. 6th Int. Conf. on X-ray Absorption Fine Structure (ed. S. S. Hasnain) (Ellis-Horwood Publishers, in the press).

  26. Hachiya, K., Sasaki, M., Saruta, Y., Mikami, N. & Yasunaga, T. J. phys. Chem. 88, 23–27 (1984).

    Article  CAS  Google Scholar 

  27. Baes, C. F. Jr & Mesmer, R. E. The Hydrolysis of Cations (Wiley, New York, 1986).

    Google Scholar 

  28. Lotmar, V. W. & Feitknecht, W. Z. Kristallogr. A93, 368–378 (1936).

    CAS  Google Scholar 

  29. May, H. M., Kinniburgh, D. G., Helmke, P. A. & Jackson, M. L. Geochim. cosmochim. Acta 50, 1667–1677 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chisholm-Brause, C., O'Day, P., Brown, G. et al. Evidence for multinuclear metal-ion complexes at solid/water interfaces from X-ray absorption spectroscopy. Nature 348, 528–531 (1990). https://doi.org/10.1038/348528a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348528a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing