Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simulation of modern and glacial climates with a coupled global model of intermediate complexity

Abstract

A global coupled ocean–atmosphere model of intermediate complexity is used to simulate the equilibrium climate of both today and the Last Glacial Maximum, around 21,000 years ago. The model successfully predicts the atmospheric and oceanic circulations, temperature distribution, hydrological cycle and sea-ice cover of both periods without using ‘flux adjustments’. Changes in oceanic circulation, particularly in the Atlantic Ocean, play an important role in glacial cooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zonally averaged annual-mean characteristics: a, air temperature; b,precipitation; c, wind stress over the oceans.
Figure 2: Meridional transport stream function for the Atlantic (top), Indo-Pacific (middle) and global ocean (bottom).
Figure 3: Zonal mean salinity in the Atlantic for the modern climate (a) and the difference between glacial and modern climates (b).
Figure 4: Meridional heat transport curves for the Atlantic (a), the Indo-Pacific (b), the global ocean (c) and the atmosphere.
Figure 5: Annual-mean atmospheric meridional mass transport in units of 109 kg s−1.
Figure 6: Temperature (a, b) and precipitation (c, d) changes in the glacial simulation relative to the modern climate simulation (LGM minus modern).
Figure 7: Glacial changes in three characteristics simulated with the coupled model (solid line) and the slab ocean (dashed line).

Similar content being viewed by others

References

  1. CLIMAP Project Members. Seasonal reconstruction of the Earth's surface at the last glacial maximum. (Map Chart Ser. MC-36, Geol. Soc. Am., Boulder, Geol. Soc. Am.(1981).

  2. Joussaume, S. & Taylor, K. E. in Proc. 1st Int. AMIP Scientific Conf., Monterey 425–430 (World Climate Research Project, 1995.

  3. Webb, R. S., Rind, D. H., Lehman, S. J., Healy, R. J. & Sigman, D. Influence of ocean heat transport on the climate of the last glacial maximum. Nature 385, 695–699 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Fichefet, T., Hovine, S. & Duplessy, J. C. Amodel study of the Atlantic thermohaline circulation during the last glacial maximum. Nature 372, 252–255 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Seidov, D., Sarnthein, M., Stattegger, K., Prien, R. & Weinelt, M. North Atlantic ocean circulation during the last glacial maximum and subsequent meltwater event—a numerical model. J. Geophys. Res. C 7, 16305–16332 (1996).

    Article  ADS  Google Scholar 

  6. Winguth, A. M. E., Maier-Reimer, E., Mikolajewicz, U. & Deplessy, J.-C. On the sensitivity of an ocean general circulation model to glacial boundary conditions. Paleoceanography(submitted).

  7. Boyle, E. A. & Keigwin, L. D. Deep circulation of the North Atlantic over the last 200,000 years: Geochemical evidence. Science 218, 784–787 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Curry, W. B., Duplessy, J. C., Labeyrie, L. D. & Shackleton, N. J. Changes in the distribution of δ13C of deep water ΣCO2between the last glaciation and the Holocene. Paleoceanography 3, 317–341 (1988).

    Article  ADS  Google Scholar 

  9. Sarnthein, M.et al. Variations in Atlantic surface paleoceanography, 50–80N: A time slice record of the last 30,000 years. Paleoceanography 10, 1063–1094 (1995).

    Article  ADS  Google Scholar 

  10. Petoukhov, V.et al. CLIMBER-2: A climate system model of intermediate complexity. Clim. Dyn.(submitted).

  11. Petoukhov, V. K. & Ganopolski, A. V. A Set of Climate Models for Integrated Modelling of Climate Change Impacts 1–96 (IIASA, Laxenburg, 1994).

    Google Scholar 

  12. Stocker, T. F., Wright, D. G. & Mysak, L. A. Azonally averaged, coupled ocean–atmosphere model for paleoclimate studies. J. Clim. 5, 773–797 (1992).

    Article  ADS  Google Scholar 

  13. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Gleckler, P. J.et al. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett. 22, 791–794 (1995).

    Article  ADS  Google Scholar 

  15. Peltier, W. R. Ice age paleotopography. Science 265, 195–201 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Schmitz, W. J. On the interbasin scale thermohaline circulation. Rev. Geophys. 33, 151–173 (1995).

    Article  ADS  Google Scholar 

  17. Macdonald, A. & Wunsch, C. An estimate of global ocean circulation and heat fluxes. Nature 382, 436–439 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Toggweiler, J. R. & Samuels, B. in The Global Carbon Cycle (ed. Heimann, M.) 333–366 (Springer, Berlin, 1993).

    Book  Google Scholar 

  19. Döös, K. The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr. 24, 429–442 (1994).

    Article  ADS  Google Scholar 

  20. Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clin. Dyn. 12, 799–811 (1996).

    Article  Google Scholar 

  21. Levitus, S., Burgett, R. & Boyer, T. World Ocean Atlas 1994 Vol. 3, Salinity 1–150 (US Govt Printing Office, Washington DC, 1994).

    Google Scholar 

  22. Hall, M. M. & Bryden, H. L. Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res. 29, 339–359 (1982).

    Article  ADS  Google Scholar 

  23. Stommel, H. Asymmetry of interoceanic freshwater and heat fluxes. Proc. Natl Acad. Sci. USA 77, 2377–2381 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Manage, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean–atmosphere model. J. Clim. 1, 841–866 (1988).

    Article  ADS  Google Scholar 

  25. Houghton, J. T.et al. (eds) Climate Change 1995—The Science of Climate Change (Cambridge Univ. Press, 1996).

    Google Scholar 

  26. Street-Perrot, F. A. & Harrison, S. P. in Paleoclimate Analysis and Modeling (ed. Hecht, A. D.) 291–340 (Wiley, New York, 1985).

    Google Scholar 

  27. Herron, M. M. & Langway, C. C. in Greenland Ice Core: Geophysics, Geochemistry, and the Environment (eds Langway, C. C., Oeschger, H. & Dansgaard, W.) 77–84 (Am. Geophys. Union, Washington DC, 1985).

    Book  Google Scholar 

  28. Winkler, M. G. & Wang, P. K. in Global Climates since the Last Glacial Maximum (ed. Wright, H. E.) 221–264 (Univ. Minnesota Press, Minneapolis, 1993).

    Google Scholar 

  29. Hooghiemstra, H., Bechler, A. & Beug, H.-J. Isopollen maps for 18,000 years B.P. of the Atlantic offshore of Northwest Africa: Evidence for paleowind circulation. Paleoceanography 2, 561–582 (1987).

    Article  ADS  Google Scholar 

  30. Sarnthein, M.et al. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9, 209–267 (1994).

    Article  ADS  Google Scholar 

  31. Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Lynch-Stieglitz, J. & Fairbanks, R. G. Aconservative tracer for glacial ocean circulation from carbon isotope and palaeonutrient measurements in benthic foraminifera. Nature 369, 308–310 (1994).

    Article  ADS  Google Scholar 

  33. Rahmstorf, S. Rapid climate transitions in a coupled ocean–atmosphere model. Nature 372, 82–85 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Beckmann, A. & Döscher, R. Amethod for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr. 27, 581–591 (1997).

    Article  ADS  Google Scholar 

  35. Cubasch, U.et al. Aclimate change simulation starting from 1935. Clim. Dyn. 11, 71–84 (1995).

    Article  Google Scholar 

  36. Manabe, S. & Stouffer, R. J. Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Clim. 7, 5–23 (1994).

    Article  ADS  Google Scholar 

  37. Rahmstorf, S. Risk of sea-change in the Atlantic. Nature 388, 825–826 (1997).

    Article  ADS  CAS  Google Scholar 

  38. Stute, M.et al. Cooling of tropical Brazil (5 °C) during the last glacial maximum. Science 269, 379–383 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Thompson, L. G.et al. Late glacial stage and holocene tropical ice core records from Huascaran, Peru. Science 269, 46–50 (1995).

    Article  ADS  CAS  Google Scholar 

  40. Beck, J. W., Récy, J., Taylor, F., Edwards, R. L. & Cabioch, G. Abrupt changes in early holocene tropical sea surface temperature derived from coral records. Nature 385, 705–707 (1997).

    Article  ADS  CAS  Google Scholar 

  41. Guilderson, T. P., Fairbanks, R. G. & Rubenstone, J. L. Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663–665 (1994).

    Article  ADS  CAS  Google Scholar 

  42. Broecker, W. S. Oxygen isotope constraints on surface ocean temperatures. Quat. Res. 26, 121–134 (1986).

    Article  CAS  Google Scholar 

  43. Peyron, O.et al. Climatic reconstruction in Europe from pollen data, 18,000 years before present. Quat. Res.(in the press).

  44. Guiot, J., Pons, A., de Beaulieu, J. L. & Reille, M. A140,000 year climatic reconstruction from two European records. Nature 338, 309–313 (1989).

    Article  ADS  Google Scholar 

  45. Jäger, L. Monatskarten des Niederschlags für die ganze Erde, Ber. Deutschen Wetterdienstes No. 139, 1–38 (1976).

    Google Scholar 

  46. Hellerman, S. & Rosenstein, M. Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.R. and M.C. acknowledge discussions with S. Joussaume, A. Broccoli and others at the European Science Foundation's Research Conference on Paleoclimate Modelling and Analysis, in Castelvecchio Pascoli. We received comments on the manuscript from E. Bard; D. Smart critically read the manuscript. This work was supported by the European Union's Environment and Climate programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rahmstorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganopolski, A., Rahmstorf, S., Petoukhov, V. et al. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356 (1998). https://doi.org/10.1038/34839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34839

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing