Bead movement by single kinesin molecules studied with optical tweezers

Abstract

KINESIN, a mechanoenzyme that couples ATP hydrolysis to movement along microtubules, is thought to power vesicle transport and other forms of microtubule-based motility1–6. Here, microscopic silica beads7 were precoated with carrier protein8,9, exposed to low concentrations of kinesin, and individually manipulated with a single-beam gradient-force optical particle trap10–12 ('optical tweezers') directly onto microtubules. Optical tweezers greatly improved the efficiency of the bead assay, particularly at the lowest kinesin concentrations (corresponding to 1 molecule per bead). Beads incubated with excess kinesin moved smoothly along a microtubule for many micrometres, but beads carrying from 0.17–3 kinesin molecules per bead, moved, on average, only about 1.4 µm and then spontaneously released from the microtuble. Application of the optical trap directly behind such moving beads often pulled them off the microtubule and back into the centre of the trap. This did not occur when a bead was bound by an AMP.PNP-induced rigor linkage, or when beads were propelled by several kinesin molecules. Our results are consistent with a model in which kinesin detaches briefly from the microtubule during a part of each mechanochemical cycle, rather than a model in which kinesin remains bound at all times.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 38–50 (1985).

    Article  Google Scholar 

  2. 2

    Vale, R. D. et al., Cell 43, 623–632 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Vale, R. D. A. Rev. Cell Biol. 3, 347–378 (1987).

    CAS  Article  Google Scholar 

  4. 4

    Shroer, T. A. et al. J. Cell Biol. 107, 1785–1792 (1988).

    Article  Google Scholar 

  5. 5

    Scholey, J. M. Nature 318, 483–486 (1985).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Brady, S. T., Pfister, K. K. & Bloom, G. S. Proc. natn. Acad. Sci. U.S.A. 87, 1061–1065 (1990).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Stöber, W., Fink, A. & Bohn, E. J. Colloid Interface Sci. 26, 62–69 (1968).

    ADS  Article  Google Scholar 

  8. 8

    Toyoshima, Y. Y. et al. Nature 328, 536–539 (1987).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ashkin, A. & Dziedzic, J. M. Science 235, 1517–1520 (1987).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ashkin, A., Dziedzic, J. M. & Yamane, T. Nature 330, 769–771 (1987).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Block, S. M., Blair, D. F. & Berg, H. C. Nature 338, 514–518 (1989).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Miller, R. H. & Lasek, R. J. J. Cell Biol. 101, 2181–2193 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Gelles, J., Schnapp, B. J. & Sheetz, M. P. Nature 331, 450–453 (1988).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Schnapp, B. J., Crise, B., Sheetz, M. P., Reese, T. S. & Khan, S. Proc. natn. Acad. Sci. U.S.A. (in the press).

  16. 16

    Huxley, H. E. & Faruqi, A. R. A. Rev. Biophys. Bioeng. 12, 381–417 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Cooke, R. C.R.C. Crit. Rev. Biochem. 21, 53–118 (1986).

    CAS  Article  Google Scholar 

  18. 18

    Hirokawa, N. et al. Cell 56, 876–878 (1989).

    Article  Google Scholar 

  19. 19

    Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Yang, J. T. et al. Science 249, 42–47 (1990).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 83, 8530–8534 (1986).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 6314–6318 (1988).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Schnapp, B. J. & Reese, T. S. Proc. natn. Acad. Sci. U.S.A. 86, 1548–1552 (1989).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Bell, C. W. et al. Meth. Enzym. 85, 450–474 (1982).

    CAS  Article  Google Scholar 

  25. 25

    Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. Cell 40, 559–569 (1985).

    CAS  Article  Google Scholar 

  26. 26

    Kusnetsov, S. A. et al. EMBO J. 7, 353–356 (1988).

    Article  Google Scholar 

  27. 27

    Bloom, G. S. et al. Biochemistry 27, 3409–3416 (1988).

    CAS  Article  Google Scholar 

  28. 28

    Kosik, K. S. et al. J. biol. Chem. 265, 3278–3283 (1990).

    CAS  Google Scholar 

  29. 29

    Schnapp, B. J. Meth. Enzym. 134, 561–573 (1986).

    CAS  Article  Google Scholar 

  30. 30

    Block, S. M. in Noninvasive Techniques in Cell Biology, 375–401 (Wiley-Liss, New York, 1990).

    Google Scholar 

  31. 31

    Berg, H. C. in Random Walks in Biology, Ch. 4 (Princeton University Press, 1983).

    Google Scholar 

  32. 32

    Brennen, C. & Winet, H. A. Rev. Fluid Mech. 9, 339–398 (1977).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Block, S., Goldstein, L. & Schnapp, B. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990). https://doi.org/10.1038/348348a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.