Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mutant T4 lysozyme displays five different crystal conformations

Abstract

PHAGE T4 lysozyme consists of two domains between which is formed the active-site cleft of the enzyme1,2. The crystallographically determined thermal displacement parameters for the protein2 suggested that the amino terminal of the two domains undergoes 'hinge-bending' motion about an axis passing through the waist of the molecule. Such conformational mobility may be important in allowing access of substrates to the active site of the enzyme1. We report here a crystallographic study of a mutant T4 lysozyme which demonstrates further the conformational flexibility of the protein. A mutant form of the enzyme with a methionine residue (Met 6) replaced by isoleucine crystallizes with four independent molecules in the crystal lattice. These four molecules have distinctly different conformations. The mutant protein can also crystallize in standard form with a structure very similar to the wild-type protein. Thus the mutant protein can adopt five different crystal conformations. The isoleucine for methionine substitution at the intersection of the two domains of T4 lysozyme apparently enhances the hinge-bending motion presumed to occur in the wild-type protein, without significantly affecting the catalytic activity or thermal stability of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matthews, B. W. & Remington, S. J. Proc. natn. Acad. Sci. U.S.A. 71, 4178–4182 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Weaver, L. H. & Matthews, B. W. J. molec. Biol. 193, 189–199 (1987).

    Article  CAS  Google Scholar 

  3. Alber, T., Dao-pin, S., Nye, J. A., Muchmore, D. C. & Matthews, B. W. Biochemistry 26, 3754–3758 (1987).

    Article  CAS  Google Scholar 

  4. Alber, T. & Matthews, B. W. Meth. Enzym. 154, 511–533 (1987).

    Article  CAS  Google Scholar 

  5. Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, D. E. & Dahlquist, F. W. Meth. Enzym. 177, 44–73 (1989).

    Article  CAS  Google Scholar 

  6. Tsugita, A., Inouye, M., Terzaghi, E. & Streisinger, G. J. biol. Chem. 243, 391–397 (1968).

    CAS  PubMed  Google Scholar 

  7. Becktel, W. J. & Schellman, J. A. Biopolymers 26, 1859–1877 (1987).

    Article  CAS  Google Scholar 

  8. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

    Article  CAS  Google Scholar 

  9. Schmid, M. F. et al. Acta crystallogr. A37, 701–710 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Brennan, R. G., Wozniak, J., Faber, R. & Matthews, B. W. J. Crystal Growth 90, 160–167 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Jones, T. A. in Crystallographic Computing (ed. Sayre, D.) 303–317 (Oxford University Press, 1982).

    Google Scholar 

  12. Phillips, D. C. Biochem. Soc. Symp. 31, 11 (1970).

    Google Scholar 

  13. Nishikawa, K., Ooi, T., Isogai, Y. & Saito, N. J. Phys. Soc. Jpn. 32, 1331–1337 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175–220 (1979).

    Article  CAS  Google Scholar 

  15. Steitz, T. A., Shoham, M. & Bennett, W. S. Jr Phil. Trans. R. Soc. B293, 43–52 (1981).

    Article  ADS  Google Scholar 

  16. Remington, S. J., Wiegand, G. & Huber, R. J. molec. Biol. 158, 111–152 (1982).

    Article  CAS  Google Scholar 

  17. Huber, R. & Bennett, W. S. Jr Biopolymers 22, 261–279 (1983).

    Article  CAS  Google Scholar 

  18. Colman, P. M., Deisenhofer, J., Huber, R. & Palm, W. J. molec. Biol. 100, 257–282 (1976).

    Article  CAS  Google Scholar 

  19. Huber, R., Deisenhofer, J., Colman, P. M., Matsushima, M. & Palm, W. Nature 264, 415–420 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Hawkes, R., Grütter, M. G. & Schellman, J. J. molec. Biol. 175, 195–212 (1984).

    Article  CAS  Google Scholar 

  21. Anderson, B. F., Baker, H. M., Norris, G. E., Rumball, S. V. & Baker, E. N. Nature 344, 784–787 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, H., Matthews, B. A mutant T4 lysozyme displays five different crystal conformations. Nature 348, 263–266 (1990). https://doi.org/10.1038/348263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348263a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing