Abstract
SIGNALLING by steroid hormones is mediated by receptor proteins that bind hormonal ligands and regulate the transcription of specific genes. The heat-shock protein hsp90 seems to associate selectively with unliganded receptors (aporeceptors), but it has not been determined whether this interaction affects receptor function in vivo. To address the role of hsp90, we have taken advantage of the capacity of mammalian steroid receptors to function in yeast1–4. We constructed a strain of Saccharomyces cerevisiae in which hsp90 expression was regulatable and could be reduced more than 20-fold relative to wild type. At low levels of hsp90, aporeceptors seem to be mostly hsp90-free, yet fail to enhance transcription; on hormone addition, the receptors are activated but with markedly reduced efficiency. Thus hsp90 does not inhibit receptor function solely by steric interference; rather, hsp90 seems to facilitate the subsequent response of the aporeceptor to the hormonal signal. This is the first biological evidence that hsp90 acts in the signal transduction pathway for steroid receptors.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Schena, M. & Yamamoto, K. R. Science 241, 965–967 (1988).
Metzger, D., White, J. H. & Chambon, P. Nature 334, 31–36 (1988).
McDonnell, D. P., Pike, J. W., Drutz, D. J., Butt, T. R. & O'Malley, B. W. Molec. Cell. Biol. 9, 3517–3523 (1989).
Picard, D., Schena, M. & Yamamoto, K. R. Gene 86, 257–261 (1990).
Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J. & Lindquist, S. Molec. cell. Biol. 9, 3919–3930 (1989).
Lindquist, S. & Craig, E. A. A. Rev. Genet. 22, 631–677 (1988).
Groyer, A., Schweizer-Groyer, G., Cadepond, F., Mariller, M. & Baulieu, E.-E. Nature 328, 624–626 (1987).
Sanchez, E. R. et al. J. biol. Chem. 262, 6986–6991 (1987).
Willmann, T. & Beato, M. Nature 324, 688–691 (1986).
Klein-Hitpass, L. et al. Cell 60, 247–257 (1990).
Bresnick, E. H., Dalman, F. C., Sanchez, E. R. & Pratt, W. B. J. biol. Chem. 264, 4992–4997 (1989).
Picard, D., Salser, S. J. & Yamamoto, K. R. Cell 54, 1073–1080 (1988).
Picard, D., Kumar, V., Chambon, P. & Yamamoto, K. R. Cell Reg. 1, 291–299 (1990).
Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Nature 340, 66–68 (1989).
Pratt, W. B. et al. J. biol. Chem. 263, 267–273 (1988).
Dalman, F. C. et al. J. biol. Chem. 264, 19815–19821 (1989).
Howard, K. J., Holley, S. J., Yamamoto, K. R. & Distelhorst, C. W. J. biol. Chem., 265, 11928–11930 (1990).
Godowski, P. J., Rusconi, S., Miesfeld, R. & Yamamoto, K. R. Nature 325, 365–368 (1987).
Yamamoto, K. R., Godowski, P. J. & Picard, D. Cold Spring Harbor Symp. quant Biol. 53, 803–811 (1988).
Johnston, M. & Davis, R. W. Molec. cell. Biol. 4, 1440–1448 (1984).
Sikorski, R. S. & Hieter, P. Genetics 122, 19–27 (1989).
Schena, M., Freedman, L. P. & Yamamoto, K. R. Genes Dev. 3, 1590–1601 (1989).
Patel, P. D., Sherman, T. G., Goldman, D. J. & Watson, S. J. Molec. Endocr. 3, 1877–1885 (1989).
Green, S. et al. Nature 320, 134–139 (1986).
Tora, L. et al. EMBO J. 8, 1981–1986 (1989).
Klein-Hitpass, L., Schorpp, M., Wagner, U. & Ryffel, G. U. Cell 46, 1053–1061 (1986).
Gametchu, B. & Harrison, R. W. Endocrinology 114, 274–279 (1984).
Okret, S., Wikström, A.-C., Wrange, Ö., Andersson, B. & Gustafsson, J.-Å. Proc. natn. Acad. Sci. U.S.A. 81, 1609–1613 (1984).
Simons, S. S. Jr, Thompson, E. B. & Johnson, D. F. Biochem. biophys. Res. Commun. 86, 793–800 (1979).
Yocum, R. R., Hanley, S., West, R. W. Jr & Ptashne, M. Molec. cell. Biol. 4, 1985–1998 (1984).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Picard, D., Khursheed, B., Garabedian, M. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–168 (1990). https://doi.org/10.1038/348166a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/348166a0
Further reading
-
Structure of Hsp90–Hsp70–Hop–GR reveals the Hsp90 client-loading mechanism
Nature (2022)
-
Structure of Hsp90–p23–GR reveals the Hsp90 client-remodelling mechanism
Nature (2022)
-
Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle
Nature Communications (2021)
-
Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90
Nature Communications (2020)
-
The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation
Nature Communications (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.