The Drosophila claret segregation protein is a minus-end directed motor molecule


A PRODUCT encoded at the claret locus in Drosophila is needed for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo1,2. The predicted amino-acid sequence of the segregation protein was shown recently to be strikingly similar to Drosophila kinesin heavy chain3. We have expressed the claret segregation protein in bacteria and have found that the bacterially expressed protein has motor activity in vitro with several novel features. The claret motor is slow (4 μm min−1), unlike either kinesin or dyneins. It has the directionality, the ability to generate torque and the sensitivity to inhibitors reported previously for dyneins. The finding of minus-end directed motor activity for a protein with sequence similarity to kinesin suggests that the dynein and kinesin motor domains are ancestrally related. The minus-end directed motor activity of the claret motor is consistent with a role for this protein in producing chromosome movement along spindle microtubules during prometaphase and/or anaphase.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Sturtevant, A. H. Z. Wiss. Zool. 135, 323–356 (1929).

    Google Scholar 

  2. 2

    Lewis, E. B. & Gencarella, W. Genetics 37, 600–601 (1952).

    Google Scholar 

  3. 3

    Endow, S. A., Henikoff, S. & Niedziela, L. S. Nature 345, 81–83 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Yamamoto, A. H., Komma, D. J., Shaffer, C. D., Pirrotta, V. & Endow, S. A. EMBO J. 8, 3543–3552 (1989).

    CAS  Article  Google Scholar 

  5. 5

    McDonald, H. B. & Goldstein, L. S. B. Cell 61, 991–1000 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Walker, R. A., Gliksman, N. R. & Salmon, E. D. in Optical Microscopy for Biology (eds Herman, B. & Jacobsen, K.) 395–407 (Wiley-Liss, New York, 1990).

    Google Scholar 

  7. 7

    Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. G. & Goldstein, L. S. B. Science 249, 42–47 (1990).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Mcintosh, J. R. & Porter, M. E. J. biol. Chem. 284, 6001–6004 (1989).

    Google Scholar 

  9. 9

    Paschal, B. M. & Vallee, R. B. Nature 330, 181–183 (1987).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cohn, S. A., Ingold, A. L. & Scholey, J. M. J. biol. Chem. 264, 4290–4297 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. Cell 40, 559–569 (1985).

    CAS  Article  Google Scholar 

  12. 12

    Paschal, B. M., Shpetner, H. S. & Vallee, R. B. J. Cell Biol. 105, 1273–1282 (1987).

    CAS  Article  Google Scholar 

  13. 13

    Paschal, B. M. et al. Nature 330, 672–674 (1987).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Vale, R. D. & Toyoshima, Y. Y. Cell 52, 459–469 (1988).

    CAS  Article  Google Scholar 

  15. 15

    Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Cell 62, 579–589 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Hyman, A. A. et al. Meth. Enzym. (in the press).

  17. 17

    Vale, R. D. et al. Cell 43, 623–632 (1985).

    CAS  Article  Google Scholar 

  18. 18

    Vale, R. D. & Goldstein, L. S. B. Cell 60, 883–885 (1990).

    CAS  Article  Google Scholar 

  19. 19

    Salmon, E. D. in Mitosis (eds Hyams, J. S. & Brinkley, B. R.) 119–181 (Academic, San Diego, 1989).

    Google Scholar 

  20. 20

    Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Meth. Enzym. 185, 60–89 (1990).

    CAS  Article  Google Scholar 

  21. 21

    Walker, R. A. et al. J. Cell Biol. 107, 1437–1448 (1988).

    CAS  Article  Google Scholar 

  22. 22

    Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Nature 331, 499–504 (1988).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Sale, W. S. & Fox, L. A. J. Cell Biol. 107, 1793–1797 (1988).

    CAS  Article  Google Scholar 

  24. 24

    Kuznetsov, S. A. et al. EMBO J. 7, 353–358 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walker, R., Salmon, E. & Endow, S. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing