Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous

Abstract

MANDELATE racemase (MR) and muconate lactonizing enzyme (MLE) catalyse separate and mechanistically distinct reactions necessary for the catabolism of aromatic acids by Pseudomonas putida1–3. The X-ray crystal structure of MR, solved at 2.5 Å resolution, reveals that the secondary, tertiary and quaternary structures of MR and MLE4 are remarkably similar; also, MR and MLE are about 26% identical in primary structure5. However, MR has no detectable MLE activity and vice versa. Thus, MR and MLE constitute the first example of enzymes that catalyse different reactions, as opposed to mechanistically identical reactions on different substrates, yet possess sufficient structural and sequence identity that they are likely to have evolved from a common ancestor. The discovery that MR and MLE catalyse different reactions but share a common structural framework has broad implications for the natural evolution of enzymes and metabolic pathways, as well as for the rational modification of enzyme activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Halpin, R. A., Hegeman, G. D. & Kenyon, G. L. Biochemistry 20, 1525–1533 (1981).

    Article  CAS  Google Scholar 

  2. Hegeman, G. D. J. Bact. 91, 1140–1154 (1966).

    CAS  PubMed  Google Scholar 

  3. Ornston, L. N. J. biol. Chem. 241, 3800–3810 (1966).

    CAS  PubMed  Google Scholar 

  4. Goldman, A., Ollis, D. L. & Steitz, T. A. J. molec. Biol. 194, 143–153 (1987).

    Article  CAS  Google Scholar 

  5. Tsou, A. Y. et al. Biochemistry (in the press).

  6. Stenkamp, R. E. & Jensen, L. H. In Structural Aspects of Recognition and Assembly in Biological Molecules (eds Balaban, M., Sussman. J. L, Traub, W. & Yonath, A.) (Balaban ISS, Philadelphia, 1981).

    Google Scholar 

  7. Lindqvist, Y. & Brändén, C.-L. Proc. natn. Acad. Sci. U.S.A. 82, 6855–6859 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Banner, D. W. et al. Nature 255, 609–614 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Farber, G. K. & Petsko, G. A. Trends biochem. Sci. 15, 228–234 (1990).

    Article  CAS  Google Scholar 

  10. Rossmann, M. J. & Argos, P. J. biol. Chem. 250, 7525–7532 (1975).

    CAS  PubMed  Google Scholar 

  11. Greer, J. J. molec. Biol. 153, 1027–1042 (1981).

    Article  CAS  Google Scholar 

  12. Schultz, G. E. & Schirmer, R. H. Principles of Protein Structure (Springer, New York, 1979).

    Book  Google Scholar 

  13. Chothia, C. & Lesk, A. M. EMBO J. 5, 823–826 (1986).

    Article  CAS  Google Scholar 

  14. Schultz, G. E. Angew. Chem. int. Ed. Engl. 20, 143–151 (1981).

    Article  Google Scholar 

  15. Lin, D. T. et al. J. Am. chem. Soc. 110, 323–324 (1988).

    Article  CAS  Google Scholar 

  16. Ngai, K.-L. & Kallen, R. G. Biochemistry 22, 5231–5236 (1983).

    Article  CAS  Google Scholar 

  17. Tsou, A. Y., Ransom, S. C., Gerlt, J. A., Powers, V. M. & Kenyon, G. L. Biochemistry 28, 969–975 (1989).

    Article  CAS  Google Scholar 

  18. Neidhart, D. J. et al. J. biol. Chem. 263, 9268–9270 (1988).

    CAS  PubMed  Google Scholar 

  19. O'Halloran, T. V., Lippard, S. J., Richmond, T. J. & Klug, A. J. molec. Biol. 194, 705–712 (1987).

    Article  CAS  Google Scholar 

  20. Wang, B. C. Meth. Enzym. 115, 90–111 (1985).

    Article  CAS  Google Scholar 

  21. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  22. Hendrickson, W. A. & Konnert, J. H. in Biomolecular Structure, Function, Conformation and Evolution (ed. Srinivasan, R.) Vol. 1 43–57 (Pergamon, Oxford, 1980).

    Google Scholar 

  23. Terwilliger, T. C. & Eisenberg, D. Acta. crystallogr. A39, 813–817 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neidhart, D., Kenyon, G., Gerlt, J. et al. Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature 347, 692–694 (1990). https://doi.org/10.1038/347692a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347692a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing