Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Derivation of some modern arc magmas by melting of young subducted lithosphere


MOST volcanic rocks in modern island and continental arcs are probably derived from melting of the mantle wedge, induced by hydrous fluids released during dehydration reactions in the subducted lithosphere1. Arc tholeiitic and calc-alkaline basaltic magmas are produced by partial melting of the mantle, and then evolve by crystal fractionation (with or without assimilation and magma mixing) to more silicic magmas2—basalt, andesite, dacite and rhyolite suites. Although most arc magmas are generated by these petrogenetic processes, rocks with the geochemical characteristics of melts derived directly from the subducted lithosphere are present in some modern arcs where relatively young and hot lithosphere is being subducted. These andesites, dacites and sodic rhyolites (dacites seem to be the most common products) or their intrusive equivalents (tonalites and trondhjemites) are usually not associated with parental basaltic magmas3. Here we show that the trace-element geochemistry of these magmas (termed 'adakites') is consistent with a derivation by partial melting of the subducted slab, and in particular that subducting lithosphere younger than 25 Myr seems to be required for slab melting to occur.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Gill, J. B. in Orogenic Andesites and Plate Tectonics (Springer, Berlin, 1981).

    Book  Google Scholar 

  2. Defant, M. J. & Nielsen, R. L. Geochim. cosmochim. Acta 54, 87–102 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Drummond, M. S. & Defant, M. J. J. geophys. Res. (in the press).

  4. Cande, S. C. et al. Magnetic Lineations of the World's Ocean Basins (map) (Am. Ass. Petrol. Geol., 1989).

    Google Scholar 

  5. Scotese, C. R., Gahagan, L. M. & Larson, R. L. Tectonphysics 155, 27–48 (1989).

    Article  ADS  Google Scholar 

  6. Davidson, J. P. Geochim. cosmochim. Acta 51, 2185–2198 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Defant, M. J., de Boer, J. Z. & Oles, D. Tectonophysics 145, 305–317 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Kay, R. W. J. Geol. 88, 497–522 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Smith, I. E. M., Taylor, S. R. & Johnson, R. W. Contr. Miner. Petrol. 69, 227–233 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Gill, J. B. Earth planet. Sci. Lett. 68, 443–458 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Tatsumi, Y. & Koyaguchi, T. Contr. Miner. Petrol. 102, 34–40 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Kay, R. W. J. Volcan. geotherm. Res. 4, 117–132 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Defant, M. J. et al. J. Petrol. (submitted).

  14. DePaolo, D. J. Earth planet. Sci. Lett. 53, 189–202 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Tepper, J. H. Eos 70, 1420 (1989).

    Google Scholar 

  16. Rapp, R. P., Watson, E. B. & Miller C. F. (abstr.) Goldschmidt Conf. Prog. 69 (Geochem. Soc. Baltimore, 1988).

  17. Meijer, A. Contr. Miner. Petrol. 83, 45–51 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Kuroda, N., Shiraki, K. & Urano, H. Contr. Miner. Petrol. 100, 129–138 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Moore, T. E. Geol. Soc. Am. Mem. 164, 43–58 (1986).

    CAS  Google Scholar 

  20. Sorenson, S. S. Metamorph. Geol. 6, 405–435 (1988).

    Article  Google Scholar 

  21. Sorenson, S. S. & Grossman, J. N. Geochim. cosmochim. Acta 53, 3155–3177 (1989).

    Article  ADS  Google Scholar 

  22. Parson, B. A. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  23. Peacock, S. M. Science 248, 329–337 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Jahn, B. M., Vidal, Ph. & Kröner, A. Contr. Miner. Petrol. 86, 398–408 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Martin, H. Geology 14, 753–756 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Ellam, R. M. & Hawkesworth, C. J. Geology 16, 314–317 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Masuda, A., Nakamura, N. & Tanaka, T. Geochim. cosmochim. Acta 37, 239–244 (1973).

    Article  ADS  CAS  Google Scholar 

  28. Defant, M. J. et al. Contr. Miner. Petrol. (in the press).

  29. Puig, A., Herve, M., Suarez, M. & Saunders, A. D. J. Volcan geothermal Res. 20, 149–163 (1984).

    Article  ADS  Google Scholar 

  30. Stern, C. R., Skewes, M. A. & Duran, M. Actas Primer Congreso Geologico Chileno 2, 195–212 (1976).

    Google Scholar 

  31. Stern, C. R., Futa, K. & Muehlenbachs, K. in Andean Magmatism—Chemical and Isotopic Constraints (eds Harmon, R. S. & Barreiro, B. A.) 31–46 (Shiva, Cheshire, 1984).

    Book  Google Scholar 

  32. Barker, F., Arth, J. G. & Stern, T. W. Am. Miner. 71, 632–643 (1986).

    CAS  Google Scholar 

  33. Kepezhinskas, P. K. Geologiya i razvedka 1, 59–65 (1988).

    Google Scholar 

  34. Cameron, K. L. & Cameron, M. Contr. Miner. Petrol. 91, 1–11 (1985).

    Article  ADS  CAS  Google Scholar 

  35. Bartholomew, D. S. thesis, Univ. Leicester (1984).

  36. Rose, W. I., Grant, N. K. & Easter, J. in Ash-Flow Tuffs, Geol. Soc. Am., Spec. Pap. 180, 87–99 (1979).

    Book  Google Scholar 

  37. Smith, D. R. & Leeman, W. P. J. geophys. Res. 92, 10313–10334 (1987).

    Article  ADS  Google Scholar 

  38. Rogers, G., Saunders, A. D., Terrell, D. J., Verma, S. P. & Marriner, G. F. Nature 315, 389–392 (1985).

    Article  ADS  CAS  Google Scholar 

  39. Johnson, R. W. et al. Circum-Pacific Council for Energy and Mineral Resources, Earth Sci. Ser. Vol. 7 (eds Taylor, B. & Exon, N. F.) 155–226 (1987).

    Google Scholar 

  40. Wakita, H., Rey, P. & Schmitt, R. A. Proc. lunar Sci. Conf. 2, 1319–1329 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Defant, M., Drummond, M. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing