Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus

Abstract

RETINOIC acid is a vitamin A derivative with striking effects on development and cell differentiation1–3. Several nuclear retinoic acid receptors (RARs), acting as ligand-inducible transcription factors, have been characterized4–8 and indirect evidence suggests that they have distinct roles9–11. One of the most intriguing properties of retinoic acid is its ability to induce in vivo differentiation of acute promyelocytic leukaemia (APL) cells into mature granulocytes, leading to morphological complete remissions12–13. Because the RARα gene maps to chromosome 17q21 (ref. 14), close to the t(15;17) (q21–qll–22) translocation specifically associated with APL15, we analysed RARα gene structure and expression in APL cells. We report here that, in one APL-derived cell line, the RARα gene has been translocated to a locus, myl, on chromosome 15, resulting in the synthesis of a myl/RARα fusion messenger RNA. Using two probes located on either side of the cloned breakpoint, we have found genomic rearrangements of one or other locus in six patients out of eight, demonstrating that the RARα and/or myl genes are frequently rearranged in APL and the breakpoints are clustered. These findings strongly implicate retinoic acid receptor α in leukaemogenesis.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Roberts, A. & Sporn, M. in The Retinoids (eds Sporn, M., Roberts, A. & Goodman, D.) 209–286 (Academic Press, Orlando, 1984).

    Book  Google Scholar 

  2. Strickland, S. & Mahdavi, M. Cell 15, 393–403 (1978).

    CAS  Article  Google Scholar 

  3. Thaller, C. & Eichete, G. Nature 327, 625–628 (1987).

    ADS  CAS  Article  Google Scholar 

  4. Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. Nature 330, 624–629 (1987).

    ADS  CAS  Article  Google Scholar 

  5. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    ADS  CAS  Article  Google Scholar 

  6. de Thé, H., Marchio, A., Tiollais, P. & Dejean, A. Nature 330, 667–670 (1987).

    ADS  Article  Google Scholar 

  7. Brand, N. et al. Nature 332, 850–853 (1988).

    ADS  CAS  Article  Google Scholar 

  8. Zelent, A., Krust, A., Petkovich, M., Kastner, P. & Chambon, P. Nature 339, 714–717 (1989).

    ADS  CAS  Article  Google Scholar 

  9. de Thé, H., Marchio, A., Tiollais, P. & Dejean, A. EMBO J. 8, 429–433 (1989).

    Article  Google Scholar 

  10. Dollé, P. et al. Nature, 342, 702–705 (1989).

    ADS  Article  Google Scholar 

  11. de Thé, H., Vivanco-Ruiz, M. D. M., Tiollais, P., Stunnenberg, H. & Dejean, A. Nature, 343, 177–180 (1990).

    ADS  Article  Google Scholar 

  12. Huang, M. E. et al. Blood 72, 567–571 (1988).

    CAS  Article  Google Scholar 

  13. Castaigne, S. et al. Blood (in the press).

  14. Mattei, M. G., Petkovich, M., Mattei, J. F., Brand, N. & Chambon, P. Hum. Genet. 80, 186–187 (1988).

    CAS  Article  Google Scholar 

  15. Larson, R. A. et al. Am. J. Med. 76, 827–841 (1984).

    CAS  Article  Google Scholar 

  16. Claverie, J. M. & Bougueleret, L. Nucleic Acids Res. 14, 179–196 (1986).

    CAS  Article  Google Scholar 

  17. Green, S. & Chambon, P. Nature 324, 615–617 (1986).

    ADS  CAS  Article  Google Scholar 

  18. Sap, J., Munoz, A., Schmitt, J., Stunnenberg, H. & Vennström, B. Nature 340, 242–244 (1989).

    ADS  CAS  Article  Google Scholar 

  19. Damm, K., Thompson, C. & Evans, R. Nature 339, 593–597 (1989).

    ADS  CAS  Article  Google Scholar 

  20. Dejean, A., Bougueleret, L., Grzeschik, K. H. & Tiollais, P. Nature 322, 70–72 (1986).

    ADS  CAS  Article  Google Scholar 

  21. Hollenberg, S., Guiguere, V., Segui, P. & Evans, R. Cell 49, 39–46 (1987).

    CAS  Article  Google Scholar 

  22. Kumar, V. et al. Cell 51, 941–951 (1987).

    CAS  Article  Google Scholar 

  23. Tora, L., Gronemeyer, H., Turcotte, B., Gaub, M. P. & Chambon, P. Nature 333, 185–188 (1988).

    ADS  CAS  Article  Google Scholar 

  24. Green, S., Kumar, V., Theulaz, I., Wahli, W. & Chambon, P. EMBO J. 7, 3037–3044 (1988).

    CAS  Article  Google Scholar 

  25. Saiki, R. et al. Science 239, 487–491 (1988).

    ADS  CAS  Article  Google Scholar 

  26. Kawasaki, E. S. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5698–5702 (1988).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Thé, H., Chomienne, C., Lanotte, M. et al. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347, 558–561 (1990). https://doi.org/10.1038/347558a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347558a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing