Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean

Abstract

SIGNIFICANT interannual variations in global climate, such as the El Niño/Southern Oscillation phenomenon (ENSO), result from interactions between ocean and atmosphere in the tropical Pacific. These interactions are mediated to a large degree by variations in the temperature of the sea surface, particularly in the warm, western portion of the basin1–4. Changes in sea surface temperatures (SSTs) provide precursors for the prediction of climate variability on ENSO timescales. But current ocean–atmosphere models, which estimate SSTs using climatological surface heat fluxes derived from ship observations5–7, consistently overestimate SSTs in the western Pacific by as much as 3 K. Here we use recent satellite observations of ocean transparency, coupled with climatological surface heat fluxes and ocean density profiles, to show that solar radiation in visible frequencies, usually assumed to be absorbed at the sea surface, in fact penetrates to a significant degree to below the upper mixed layer of the ocean which interacts actively with the atmosphere. The net effect is a reduction of the heat input into the upper layer; for a 20-m-thick mixed layer this is equivalent to an annual reduction in temperature of about 5–10 K. Our results provide a natural explanation for the discrepancy between the SSTs predicted by models and those observed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wyrtki, K. Science 180, 66–68 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Gill, A. E. Q. Jl R. met. Soc. 106, 447–462 (1980).

    Article  ADS  Google Scholar 

  3. Gill, A. E. & Rasmusson, E. Nature 306, 229–234 (1983).

    Article  ADS  Google Scholar 

  4. Cane, M. A. & Zebiak, S. E. Science 228, 1084–1087 (1985).

    Article  ADS  Google Scholar 

  5. Seager, R., Zebiak, S. E. & Cane, M. A. J. geophys. Res. 93, 1265–1280 (1988).

    Article  ADS  Google Scholar 

  6. Blumenthal, M. B. & Cane, M. A. J. phys. Oceanogr. 19, 815–830 (1989).

    Article  ADS  Google Scholar 

  7. Godfrey, J. S. & Lindstrom, E. J. J. geophys. Res. 94, 8007–8017 (1989).

    Article  ADS  Google Scholar 

  8. Lewis, M. R., Cullen, J. C. & Platt, T. J. geophys. Res. 88, 2565–2570 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Woods, J. D., Barkmann, W. & Horch, A. Q. Jl R. met. Soc. 110, 633–656 (1984).

    ADS  Google Scholar 

  10. Lewis, M. R. Oceanologica Acta Spec. Iss. 91–95 (1987).

  11. Gordon, H. R., Clark, D. K., Mueller, J. L. & Hovis, W. A. Science 210, 63–66 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Brown, O. B. et al. Science 229, 163–167 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Feldman, G. C. et al. Eos 70, 634–641 (1989).

    Article  ADS  Google Scholar 

  14. Austin, R. W. & Petzold, T. J. in Oceanography from Space (ed. Gower, J. F. R.) 239–256 (Plenum, New York, 1981).

    Book  Google Scholar 

  15. Smith, R. C. & Baker, K. S. Limnol. Oceanogr. 23, 247–259 (1978).

    Article  ADS  Google Scholar 

  16. Hsuing, J. J. geophys. Res. 91, 10585–10606 (1986).

    Article  ADS  Google Scholar 

  17. Levitus, S. Climatological Atlas of the World Ocean. NOAA prof Pap. 13 (U.S. Government Printing Office, Washington, D.C., 1982).

    Google Scholar 

  18. Lukas, R. & Lindstrom, E. in Proc. Aha Huliko'a Hawaiian Winter Workshop on the Dynamics of the Oceanic Surface Mixed Layer (eds Muller, P. & Henderson, D.) (Hawaii Inst. Geophys., Honolulu, 1987).

    Google Scholar 

  19. Halpern, D. Deep Sea Res.A27, 931–940 (1980).

    Article  ADS  Google Scholar 

  20. Niiler, P. & Stevenson, J. J. mar. Res. (Suppl.) 40, 465–480 (1982).

    Google Scholar 

  21. Rasmusson, E. M. & Carpenter, T. H. Mon. Wea. Rev. 110, 354–384 (1982).

    Article  ADS  Google Scholar 

  22. Liu, W. T. J. geophys. Res. 93, 6749–6760 (1988).

    Article  ADS  Google Scholar 

  23. Liu, W. T. & Gautier, C. J. geophys. Res. 95, 13209–13218 (1990).

    Article  ADS  Google Scholar 

  24. EOSAT/NASA Report of the Joint EOSAT/NASA SeaWiFS Working Group (NASA, Washington, D.C., 1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, M., Carr, ME., Feldman, G. et al. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990). https://doi.org/10.1038/347543a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347543a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing