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NEWS AND VIEWS 

Order in the midst of chaos 
Complex systems, as different as neural networks and clusters of interacting galaxies, are susceptible to chaotic 
behaviour. Numerical calculations now suggest that some degree of order may persist beneath the chaos. 

WHY is the study of complex systems 
offered as a means of solving all the out
standing problems of the real world? The 
explanation is not all that deeply hidden. 
The complex problems of the real world 
may have more in common with each 
other than with any of the simple prob
lems dealt with elegantly in the text
books. A neural network, for example, 
is a large number of neurons of which all 
interact with all others, so that people are 
reduced either to making generalizations 
about their expected behaviour or to mak
ing numerical calculations of particular 
systems. Globular clusters, or clusters of 
interacting galaxies, are in much the same 
case, as are the problems of fluid dynamics 
in the real world. All these systems, for 
example, share a propensity to run to chaos. 

This is the spirit in which Kunihiko 
Kaneko from the University of Tokyo 
(and, in particular, from the teaching
orientated College of Arts and Sciences in 
which undergraduates spend their first 
two years) has managed rigorously to de
monstrate a general property of systems 
of this kind (Phys. Rev. Lett. 65, 1391; 
1990). He says that neural networks and 
fluid dynamics are among the problems to 
which his calculations are relevant. But his 
result is interesting and important- that 
order can persist even when a complex 
system has lapsed into chaos. 

Those wishing to follow Kaneko's argu
ment had better start with a paper pub
lished a year ago (Phys. Rev. Lett. 63, 
219; 1989) which, among other things, 
contains both the notation for handling 
the problem and the inspiration for the 
study now described. The most arresting 
of his conclusions, then, was a kind of 
phase diagram outlining the relationship 
between chaotic states of a complex 
system with global coupling in which the 
phases are characterized by differing 
degrees of persistent order. 

Formally, there is no great difficulty in 
setting up the problem. If there are N 
elements in a complex system, the time 
evolution of a property x1 of the jth ele
ment will be determined primarily by 
that element's autonomous evolution, but 
also by its interactions with all the other 
elements in the system. So, if time is 
measured as a multiple n of some unit 
interval, the problem is simply that of re
lating x/n+l) to the values of all the 
xk(n)s one time-step earlier. Formally 
again, X

1
(n+ 1) is predominantly 
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(1-E)f(x/n)) on account of its auton
omous evolution, and a sum of terms 
such as (EIN) f(xk(n)) on account of the 
interaction, where f(x) is some function 
and E is a number small compared with 1. 

The fun begins with the choice of the 
function[, which, if linear, yields nothing 
remarkable, but which is well known to 
yield chaotic behaviour if taken to be, say, 
f(x) = l-ax' (where a is again a constant) 
with the rule that the integral part of any 
calculated x is discarded. The outcome, 
now one of many textbook examples of 
how to generate chaos, has the effect of 
mapping the range of numbers between 
-1 and + 1 onto itself with each successive 
iteration, and also has the convenient 
property that one can regard positive and 
negative values of the variable x1 as simply 
minuses and pluses, corresponding to, say, 
OFF and ON states of a neuron, according 
to whether they lie below or above a char
acteristic value of the parameter a. 

Kaneko's results are not dependent on 
this choice of function; he has been able to 
show that the same general pattern of be
haviour crops up with other functions. 
But the dynamical rule specifying the evo
lution of the system is rather special, in 
that all the interactions between different 
elements have the same form and the 
same strength. Those assumptions evi
dently oversimplify the properties of, say, 
a true neural network or globular cluster, 
but there is no reason to suppose that the 
assumption is critical to what emerges. 

And what is that? The conclusion that 
order is curiously immune to the onset of 
chaos. What Kaneko showed last year is 
that coherent oscillation of a system from 
PLus to MINUS is surprisingly common, but 
that appropriate values of the parameters 
E and a cause it to break up into two clus
ters (defined conceptually, not geometri
cally) which oscillate out of phase with 
each other, members of one set going 
from PLUS to MINus while the others go 
from MINus to PLUS. These persistent 
states of chaotic oscillation are the 
'phases' provided by the model. What 
seems to be happening is that, for each 
element, there is a competition between 
its tendency to chaotic instability and its 
tendency to conformity arising from the 
averaging effect of the system of elements 
as a whole. The greater the nonlinearity 
(parameter a), the more widespread the 
disorder; the greater the averaging effect 
(parameter E), the more persistent is 

coherence. 
Kaneko's article last year raises a host 

of questions that have not yet been 
answered, but his new calculation answers 
one of them in a fashion that raises further 
intriguing questions. However remote the 
model may seem from the models of 
classical dynamics, it does at least provide 
an easy way of going over to a mean-field 
representation of the system in the 
Landau and Ginzburg sense. Indeed, the 
quantity (1/N)LJ(4n))represents a kind 
of ordering mean field whose statistical 
properties can be calculated numerically. 
What emerges is that, for each set of 
parameters, the statistical distribution of 
the mean field is an inverted bell-shape 
centred on some numerical value and that 
there is a lower limit to the width of the 
inverted bell (or to the variance of the 
mean field) with increasing complexity 
(the value of N). That is what would be 
expected from the central limit theorem of 
statistics. 

The surprise is what happens to the 
mean-square deviation of the mean field, 
which would naively be expected to fall to 
zero with increasing complexity by what is 
still quaintly called the law of large 
numbers. The numerical experiments 
show that, for some values of the para
meters, the mean-square deviation of the 
mean field falls off not to zero, but to some 
constant value which is, of necessity, grea
ter than zero. What can be the explana
tion? Order in the midst of chaos. 
Kaneko shows this to be the case by cal
culating a simple statistic that measures 
the mutual correlation of the states of ele
ments in his model of the complex 
system. For good measure, he shows that 
the expectations of the law of large 
numbers are fulfilled if a little noise is 
added to the system, but that reality does 
not approach expectation as liN, but as 
some power of that factor less than one. 

That chaotic behaviour does not neces
sarily imply that everything is random is 
borne out by the well-known regularities 
in the way in which chaos develops- for 
example, by bifurcation of period-doubling, 
for all the world as if the development of 
chaos is an orderly process. The recog
nition that the chaotic states of a system 
may embody a measure of persistent 
coherence may he even more significant 
if, say, it is a way of accounting for persis
tence of neural memory in disordered 
neural networks. John Maddox 
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