Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional structure of ribonuclease H from E. coli

Abstract

THE three-dimensional structure of RNase H from Escherichia coli was determined at 1.8 Å resolution by X-ray crystallography. The enzyme was found to belong to the α + β class of structures, consisting of two distinct domains. The structure implies a possible region interacting with a DNA–RNA hybrid. The Mg2+-binding site essential for activity is located near a cluster of four acidic amino acids— one glutamic and three aspartic acid residues. These residues are completely conserved in the homology alignment of sequences of RNase H and reverse transcriptases from retro viruses and retrovirus-like entities1,2. The structural motif of β strands around the Mg2+-binding site has similarities to that in DNase I3–6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, M. S., McClure, M. A., Feng, D. F. Gray, J. & Doolittle, R. F. Proc. natn. Acad. Sci. U.S.A. 83, 7648–7652 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Doolittle, R. F., Feng, D.-F., Johnson, M. S. & McClure, M. A. Quart. Rev. Biol. 64, 1–30 (1989).

    Article  CAS  Google Scholar 

  3. Suck, D., Oefner, C. & Kabsch, W. EMBO J. 3, 2423–2430 (1984).

    Article  CAS  Google Scholar 

  4. Suck, D. & Oefner, C. Nature 321, 620–625 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Suck, D., Lahm, A. & Oefner, C. Nature 332, 464–468 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Oefner, C. & Suck, D. J. molec. Biol. 192, 605–623 (1986).

    Article  CAS  Google Scholar 

  7. Crouch, R. J. & Dirksen, M.-L. in Nuclease (eds Linn, S. M. & Roberts, R. J.) 211–241 (Cold Spring Harbor Laboratory, New York, (1982).

    Google Scholar 

  8. Itoh, T. & Tomizawa, J. Proc. natn. Acad. Sci. U.S.A. 77, 2450–2454 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Dasgupta, S., Masukata, H. & Tomizawa, J.-I. Cell 51, 1113–1122 (1987).

    Article  CAS  Google Scholar 

  10. Kanaya, S. & Crouch, R. J. J. biol. Chem. 258, 1276–1281 (1983).

    CAS  PubMed  Google Scholar 

  11. Varmus, H. Science 240, 1427–1435 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Kanaya, S. et al. J. biol. Chem. 264, 11546–11549 (1989).

    CAS  PubMed  Google Scholar 

  13. Nishikawa, K., Ooi, T., Isogi, Y. & Saito, N. J. Phys. Soc. Jpn. 32, 1331–1337 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  15. Levitt, M. & Chothia, C. Nature 261, 552–557 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Matthews, B. W. Nature 335, 294–295 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Nakamura, H. & Nishida, S. J. phys. Soc. Japan. 56, 1609–1622 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Richards, F. M. & Wyckoff, H. W. in The Enzymes, Vol. 4 (ed. Boyer, P. D.) 647–806 (Academic, New York, 1971).

    Google Scholar 

  19. Carlisle, H. C., Palmer, R. A., Mazmudar, K. S., Gorinsky, B. A. & Yeates, D. G. R. J. molec. Biol. 85, 1–18 (1974).

    Article  CAS  Google Scholar 

  20. Arni, R., Heinemann, U., Tokuoka, R. & Saenger, W. J. biol. Chem. 263, 15358–15368 (1988).

    CAS  PubMed  Google Scholar 

  21. Sugio, S., Amisaki, T., Onishi, H. & Tomita, K.-I. J. Biochem. 103, 354–366 (1988).

    Article  CAS  Google Scholar 

  22. Mauguen, Y. et al. Nature 297, 162–164 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Arnone, A. et al. J. biol. Chem. 246, 2302–2316 (1971).

    CAS  PubMed  Google Scholar 

  24. Steigemann, W. thesis, Technische Univ., München (1974).

  25. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  26. Hendrickson, W. A. & Konnert, J. H. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkatesan, K.) 13.01–13.23 (National Academy of Sciences India, Bangalore, India, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayanagi, K., Miyagawa, M., Matsushima, M. et al. Three-dimensional structure of ribonuclease H from E. coli. Nature 347, 306–309 (1990). https://doi.org/10.1038/347306a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347306a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing