Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells

Abstract

LONG-TERM reconstitution of the lymphohaematopoietic cells of a mouse after lethal irradiation requires the transplantation of at least (5–10) × 103 bone marrow cells1,2. Several cell-separation techniques based on cell-surface characteristics have been used in attempts to identify the pluripotent haematopoietic stem cells (PHSC), and have allowed the long-term engraftment of lethally irradiated mice with an enriched fraction of fewer than 200 marrow cells3–5. But these techniques enrich not only for PHSC but also for haematopoietic progenitors, especially day-12 spleen colony-forming units (CFU-S)3–5. Although day-12 CFU-S have been postulated to be primitive multipotential haematopoietic progenitors, with day-8 CFU-S representing later, more committed progenitors6, recent evidence suggests that neither of these CFU-S represents mouse PHSC7–9. Here we report that counterflow cen-trifugal elutriation, which sorts cells on the basis of size and density, can separate PHSC from these less primitive progenitors. The fraction containing the largest cells was enriched for the granulocyte-macrophage colony-forming units (CFU-GM), but gave only transient, early engraftment and was therefore depleted of PHSC. The intermediate fraction was enriched for CFU-S, but depleted of CFU-GM. Despite being devoid of CFU-GM and CFU-S, the fraction consisting of only morphological lymphocytes gave sustained, albeit delayed, reconstitution of all lympho-haematopoietic cells, and was therefore enriched for PHSC. We conclude that there are two vital classes of engrafting cells: committed progenitors, which provide initial, unsustained engraftment, and PHSC, which produce delayed, but durable, engraft-ment. Therefore for late haematological reconstitution, PHSC must be transplanted with a distinguishable source of early engraft-ing cells, thereby allowing the lethally irradiated host to survive initial aplasia.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Jones, R. J. et al. Blood 70, 1186–1192 (1987).

    CAS  PubMed  Google Scholar 

  2. Boggs, D. R., Boggs, S. S., Saxe, D. F., Gress, L. A. & Canfield, D. R. J. clin. Invest. 70, 242–253 (1982).

    Article  CAS  Google Scholar 

  3. Sprangrude, G. J., Heimfeld, S. & Weissman, I. L. Science 241, 58–62 (1988).

    Article  ADS  Google Scholar 

  4. Visser, J. M. W., Bauman, J. G. J., Mulder, A. H., Eliason, J. F. & de Leeuw, A. M. J. exp. Med. 59, 1576–1590 (1984).

    Article  Google Scholar 

  5. Szilvassy, S. J., Lansdorp, P. M., Humphries, R. K., Eaves, A. C. & Eaves, C. J. Blood 74, 930–939 (1989).

    CAS  PubMed  Google Scholar 

  6. Magli, M. C., Iscove, N. N. & Odartchenko, N. Nature 295, 527–529 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Jones, R. J., Celano, P., Sharkis, S. J. & Sensenbrenner, L. L. Blood 73, 397–401 (1989).

    CAS  PubMed  Google Scholar 

  8. Ploemacher, R. E. & Brans, R. H. C. Expl Hematol. 17, 263–266 (1989).

    CAS  Google Scholar 

  9. Bertoncello, I., Hodgson, G. S. & Bradley, T. R. Expl Hematol. 16, 245–249 (1988).

    CAS  Google Scholar 

  10. Schwartz, G. N., MacVittie, T. J., Monroy, R. L. & Vigneulle, R. M. Expl Hematol. 14, 963–970 (1986).

    CAS  Google Scholar 

  11. Wagner, J. E. et al. Blood 72, 1168–1176 (1988).

    CAS  PubMed  Google Scholar 

  12. Martin, P. J. et al. Blood 66, 664–672 (1985).

    CAS  PubMed  Google Scholar 

  13. Mitsuyasu, R. T. et al. Ann. intern. Med. 105, 20–26 (1986).

    Article  CAS  Google Scholar 

  14. Bennett, M. & Cudkowicz, G. J. cell. Physiol. 72, 129 (1968).

    Article  CAS  Google Scholar 

  15. van Bekkum, D. W., van Noord, M. J., Maat, B. & Dicke, K. A. Blood 38, 547–558 (1971).

    CAS  PubMed  Google Scholar 

  16. Andrews, R. G., Singer, J. W. & Bernstein, I. D. J. exp. Med 169, 1721–1731 (1989).

    Article  CAS  Google Scholar 

  17. Sutherland, H. J., Eaves, C. J., Eaves, A. C., Dragowska, W. & Lansdorp, P. M. Blood 74, 1563–1570 (1989).

    CAS  PubMed  Google Scholar 

  18. Lamar, E. E. & Palmer, E. Cell 37, 171–177 (1984).

    Article  CAS  Google Scholar 

  19. Mauch, P. & Hellman, S. Blood 74, 872–875 (1989).

    CAS  PubMed  Google Scholar 

  20. Engleman, E. G., Benike, C. J., Grument, F. C. & Evans, R. L. J. Immun. 127, 2124–2128 (1981).

    CAS  PubMed  Google Scholar 

  21. Coffman, R. L. & Weissman, I. L. Nature 298, 681–683 (1981).

    Article  ADS  Google Scholar 

  22. Gross-Bellard, M., Dudet, P. & Chambon, P. Eur. J. Biochem. 36, 32–38 (1973).

    Article  CAS  Google Scholar 

  23. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Cell 45, 917–927 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, R., Wagner, J., Celano, P. et al. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347, 188–189 (1990). https://doi.org/10.1038/347188a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347188a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing