Letter | Published:

Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex

Abstract

IN the hippocampus and neocortex, high-frequency (tetanic) stimu-lation of an afferent pathway leads to long-term potentiation (LTP) of synaptic transmission1–5. In the hippocampus it has recently been shown that long-term depression (LTD) of excitatory transmission can also be induced by certain combinations of synaptic activation6,7. In most hippocampal8 and all neocortical pathways4,9–11 studied so far, the induction of LTP requires the activation of JV-methyl-D-aspartate (NMDA) receptorgated conductances. Here we report that LTD can occur in neurons of slices of the rat visual cortex and that the same tetanic stimulation can induce either LTP or LTD depending on the level of depolarization of the postsynaptic neuron. By applying intracellular current injections or pharmacological disinhibition to modify the depolarizing response of the postsynaptic neuron to tetanic stimulation, we show that the mechanisms of induction of LTD and LTP are both postsynaptic. LTD is obtained if postsynaptic depolarization exceeds a critical level but remains below a threshold related to NMDA receptorgated conductances, whereas LTP is induced if this second threshold is reached.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bliss, T. V. P. & Lomo, T. J. Physiol. Lond. 232, 331–356 (1973).

  2. 2

    Komatsu, Y., Toyama, K., Maeda, J. & Sakaguchi, H. Neurosci. Lett. 26, 269–274 (1981).

  3. 3

    Lee, K. S. Brain Res. 239, 617–623 (1982).

  4. 4

    Artola, A. & Singer, W. Nature 330, 649–652 (1987).

  5. 5

    Perkins, A. T. & Teyler, T. J. Brain Res. 439, 222–229 (1988).

  6. 6

    Stanton, P. K. & Sejnowski, T. J. Nature 339, 215–218 (1989).

  7. 7

    Staubli, U. & Lynch, G. Neurosci. Abstr. 225, 16 (1988).

  8. 8

    Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

  9. 9

    Sutor, B. & Hablitz, J. J. Neurosci. Lett. 97, 111–117 (1989).

  10. 10

    Kimura, F., Nishigori, A., Shirokawa, T. & Tsumoto, T. J. Physiol., Lond. 414, 125–144 (1989).

  11. 11

    Artola, A. & Singer, W. Eur. J. Neurosci. 2, 254–269 (1990).

  12. 12

    Chagnac-Amitai, Y. & Connors, B. W. J. Neurophysiol. 61, 747–758 (1989).

  13. 13

    Wigström, H. & Gustafsson, B. Nature 301, 603–604 (1983).

  14. 14

    Larson, J. & Lynch, G. Science 232, 985–988 (1986).

  15. 15

    Reiter, H. O. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 85, 3623–3627 (1988).

  16. 16

    Bear, M. F., Kleinschmidt, A., Gu, Q. & Singer, W. J. Neurosci. 10, 909–925 (1990).

  17. 17

    Bienenstock, E. L., Cooper, L. N. & Munro, P. W. J. Neurosci. 2, 32–48 (1982).

  18. 18

    Bear, M. F., Cooper, L. N. & Ebner, F. F. Science 237, 42–48 (1987).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.