Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal

Abstract

DNA polymerases copy DNA templates with remarkably high fidelity, checking for correct base-pair formation both at nucleotide insertion and at subsequent DNA extension steps1,2,3. Despite extensive biochemical, genetic and structural studies2,4 the mechanism by which nucleotides are correctly incorporated is not known. Here we present high-resolution crystal structures of a thermostable bacterial (Bacillus stearothermophilus) DNA polymerase I large fragment5 with DNA primer templates bound productively at the polymerase active site. The active site retains catalytic activity, allowing direct observation of the products of several rounds of nucleotide incorporation. The polymerase also retains its ability to discriminate between correct and incorrectly paired nucleotides in the crystal. Comparison of the structures of successively translocated complexes allows the structural features for the sequence-independent molecular recognition of correctly formed base pairs to be deduced unambiguously. These include extensive interactions with the first four to five base pairs in the minor groove, location of the terminal base pair in a pocket of excellent steric complementarity favouring correct base-pair formation, and a conformational switch from B-form to underwound A-form DNA at the polymerase active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Bacillus fragment with duplex DNA bound at the polymerase active site.
Figure 2: Electron-density maps showing catalysis in the crystal.
Figure 3: Polymerase active site.
Figure 4: Polymerase active site with observed DNA and modelled dTTP.

Similar content being viewed by others

References

  1. Johnson, K. A. Conformational coupling in DNA polymerase fidelity. Annu. Rev. Biochem. 62, 685–713 (1993).

    Article  CAS  Google Scholar 

  2. Joyce, C. M. & Steitz, T. A. Function and structure relationships in DNA polymerases. Annu. Rev. Biochem. 63, 777–822 (1994).

    Article  CAS  Google Scholar 

  3. Echols, H. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60, 477–511 (1991).

    Article  CAS  Google Scholar 

  4. Joyce, C. M. & Steitz, T. A. Polymerase structures and function: variations on a theme? J. Bacteriol. 177, 6321–6329 (1995).

    Article  CAS  Google Scholar 

  5. Kiefer, J. R. et al. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure 5, 95–108 (1997).

    Article  CAS  Google Scholar 

  6. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313, 762–766 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Polesky, A. H., Steitz, T. A., Grindley, N. D. F. & Joyce, C. M. Identification of residues critical for the polymerase activity of the Klenow Fragment of DNA polymerase I of Escherichia coli. J. Biol. Chem. 265, 14579–14591 (1990).

    CAS  PubMed  Google Scholar 

  8. Polesky, A. H., Dahlberg, M. E., Benkovic, S. J., Grindley, N. D. F. & Joyce, C. M. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I of Escherichia coli. J. Biol. Chem. 267, 8417–8428 (1992).

    CAS  PubMed  Google Scholar 

  9. Braithwaite, D. K. & Ito, J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 21, 787–802 (1993).

    Article  CAS  Google Scholar 

  10. Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA 73, 804–808 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Steitz, T. A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q. Rev. Biophys. 23, 205–280 (1990).

    Article  CAS  Google Scholar 

  12. Harrison, S. C. Astructural taxonomy of DNA-binding proteins. Nature 353, 715–719 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Steitz, T. A., Beese, L. S., Freemont, P. S., Friedman, J. M. & Sanderson, M. R. Structural studies of Klenow fragment: an enzyme with two active sites. Cold Spring Harb. Symp. Quant. Biol. 52, 465–471 (1987).

    Article  CAS  Google Scholar 

  14. Carroll, S. S., Cowart, M. & Benkovic, S. J. Amutant of DNA polymerase I (Klenow Fragment) with reduced fidelity. Biochemistry 30, 804–813 (1991).

    Article  CAS  Google Scholar 

  15. Bell, J. B., Eckert, K. A., Joyce, C. M. & Kunkel, T. A. Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J. Biol. Chem. 272, 7345–7351 (1997).

    Article  CAS  Google Scholar 

  16. Delarue, M., Poch, O., Tordo, N., Moras, D. & Argos, P. An attempt to unify the structure of polymerases. Protein Eng. 3, 461–467 (1990).

    Article  CAS  Google Scholar 

  17. Steitz, T. A. DNA- and RNA-dependent DNA polymerases. Curr. Opin. Struct. Biol. 3, 31–38 (1993).

    Article  CAS  Google Scholar 

  18. Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Tabor, S. & Richardson, C. C. Asingle residue in DNA polymerases of the Escherichia coli DNA polymerases I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc. Natl Acad. Sci. USA 92, 6339–6343 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Joyce, C. M. Choosing the right sugar: How polymerases select a nucleotide substrate. Proc. Natl Acad. Sci. USA 94, 1619–1622 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Wong, I., Patel, S. S. & Johnson, K. A. An induced-fit kinetic mechanism for DNA replication fidelity: Direct measurement by single-turnover kinetics. Biochemistry 30, 526–537 (1991).

    Article  CAS  Google Scholar 

  22. Kuchta, R. D., Benkovic, P. & Benkovic, S. J. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27, 6716–6725 (1988).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276A, 307–326 (1997).

    Article  Google Scholar 

  24. Brünger, A. T. X-PLOR version 3.1: A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, (1992)).

    Google Scholar 

  25. Jones, T. A., Zou, J.-Y. & Cowan, S. W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, A. T. & Berman, H. M. New parameters for the refinement of nucleic acid containing structures. Acta Crystallogr. D 52, 57–64 (1996).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project No. 4. Acta Crystallogr. D 50, 607 (1994).

    Google Scholar 

  28. Lavery, R. & Sklenar, H. Defining the structure of irregular nucleic acids: Conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    Article  CAS  Google Scholar 

  29. Dickerson, D. E. in Oxford Handbook of Nucleic Acid Structure (ed Neidle, S.) (Oxford University Press, Oxford, UK, (1997)).

    Google Scholar 

  30. Saenger, W. Principles of Nucleic Acid Structure (Springer-Verlag, New York, (1984)).

    Book  Google Scholar 

Download references

Acknowledgements

We thank S. Johnson and A. Chapin Rodriguez for assistance in data collection and crystallization, and H. W. Hellinga for discussions. This work was supported by grants to L.S.B. from the American Cancer Society, North Carolina Biotechnology Center, and the Searle Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena S. Beese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiefer, J., Mao, C., Braman, J. et al. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391, 304–307 (1998). https://doi.org/10.1038/34693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34693

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing