Abstract
ALTHOUGH phage λ represents a well studied biological system, it has certain features that remain obscure. Among these is the function of the roughly one third of the phage genome dispensable for growth in the laboratory, yet retained despite undoubted pressure to economize1. Here we report that these 'accessory' sequences contain two genes which are expressed during lysogeny, and encode host-cell envelope proteins. One of these is lom (ref. 2), the product of which is found in the bacterial outer membrane, and is homologous to virulence proteins of two other enterobacterial genera. The other gene, previously unidentified, we designate bor. Expression of bor significantly increases the survival of the Escherischia coli host cell in animal serum. This property is a well known bacterial virulence determinant3,4—indeed, bor and its adjacent sequences are highly homologous to the iss serum resistance locus of the plasmid ColV2-K94, which confers virulence in animals5,6. These results show that the λ prophage is more tran-scriptionally active than has long been assumed, and suggest that lysogeny may generally have a role in bacterial survival in animal hosts, and perhaps in pathogenesis.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Identifying genomic islands with deep neural networks
BMC Genomics Open Access 02 June 2021
-
Bacteriophages are the major drivers of Shigella flexneri serotype 1c genome plasticity: a complete genome analysis
BMC Genomics Open Access 12 September 2017
-
Shigatoxin encoding Bacteriophage ϕ24B modulates bacterial metabolism to raise antimicrobial tolerance
Scientific Reports Open Access 20 January 2017
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Court, D. & Oppenheim, A. B. in Lambda II (eds Hendrix, R., Roberts, J. W., Stahl, F. W. & Weisberg, R. A.) 251–277 (Cold Spring Harbor Laboratory, New York, 1983).
Reeve, J. N. & Shaw, J. E. Molec. gen. Genet. 172, 243–248 (1979).
Taylor, P. Microbiol. Rev. 47, 46–83 (1983).
Joiner, K. A. A. Rev. Microbiol. 42, 201–230 (1988).
Chuba, P., Leon, M., Banerjee, A. & Palchaudhuri, S. Molec. gen. Genet 216, 287–292 (1989).
Binns, M. M., Davies, D. & Hardy, K. Nature 279, 778–781 (1979).
Lutkenhaus, J., Wolf-Watz, H. & Donachie, W. D. J. Bact. 142, 615–620 (1980).
Manoil, C., Mekalanos, J. & Beckwith, J. J. Bact. 172, 515–518 (1990).
Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen, G.B. J. molec. Biol. 162, 729–773 (1982).
Von Heijne, G. Nucleic Acids Res. 14, 4683–4690 (1986).
Perumal, N. & Minkley, E. G. J. biol. Chem. 259, 5357–5360 (1984).
Pearson, W. R. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).
Shuman, H. A. et al. J. biol. Chem. 255, 168–174 (1980).
Muschel, L. H., Ahl, L. A. & Baron, L. S. J. Bact 96, 1912–1914 (1968).
Poteete, A. R. in The Bacteriophages (ed. Calendar, R.) 647–682 (Plenum, New York, 1988).
Blasband, A. J., Marcotte, W. R. & Schnaitman, C. A. J. biol. Chem. 261, 12723–12732 (1986).
Smith, H. W. Nature New Biol. 238, 205–206 (1972).
Edlin, G. Nature 255, 735–737 (1975).
Edlin, G., Lin, L. & Bitner, R. J. Virol. 21, 560–564 (1977).
Edlin, G. in Persistent Viruses (eds Stevens, J. G., Todaro, G. J. & Fox, C. F.) 1–14 (Academic, New York, 1978).
Edlin, G., Tait, R. & Rodriguez, R. Bio/technology 2, 251–254 (1984).
Bishai, W. R. & Murphy, J. R. in The Bacteriophages (ed. Calendar, R.) 683–724 (Plenum, New York, 1988).
Brubaker, R. R. A. Rev. Microbiol. 39, 21–50 (1985).
Timmis, K. N., Boulnois, G. J., Bitter-Suermann, D. & Cabello, F. C. Curr. Top. Microbiol. Immunol. 118, 197–218 (1985).
Miller, V. L., Bliska, J. B. & Falkow, S. J. Bact. 172, 1062–1069 (1990).
Huang, A., Friesen, J. & Brunton, J. J. Bact. 169, 4308–4312 (1987).
Rybchin, V. N. Gene 27, 3–11 (1984).
Fernandez-Beros, M. E., Kissel, V., Lior, H. & Cabello, F. C. J. clin. Microbiol. 28, 742–746 (1990).
Boyd, D., Manoil, C. & Beckwith, J. Proc. natn. Acad. Sci. U.S.A. 84, 8525–8529 (1987).
Anilionis, A., Ostapchuk, P. & Riley, M. Molec. gen. Genet. 180, 479–481 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Barondess, J., Beckwfth, J. A bacterial virulence determinant encoded by lysogenic coliphage λ. Nature 346, 871–874 (1990). https://doi.org/10.1038/346871a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/346871a0
This article is cited by
-
Identifying genomic islands with deep neural networks
BMC Genomics (2021)
-
Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity
Nature Ecology & Evolution (2018)
-
Bacteriophages are the major drivers of Shigella flexneri serotype 1c genome plasticity: a complete genome analysis
BMC Genomics (2017)
-
Shigatoxin encoding Bacteriophage ϕ24B modulates bacterial metabolism to raise antimicrobial tolerance
Scientific Reports (2017)
-
When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness
Journal of Microbiology (2014)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.