Abstract
THE instability of chromosomes with breaks induced by X-irradi-ation led to the proposal that the natural ends of chromosomes are capped by a specialized structure, the telomere1. Telomeres prevent end-to-end fusions and exonucleolytic degradation, enable the end of the linear DNA molecule to replicate, and function in cell division (reviewed in ref. 2). Human telomeric DNA comprises ˜2–20 kilobases (kb) of the tandemly repeated sequence (TTAGGG)n oriented 5′→3′ towards the end of the chromosome3,4, interspersed with variant repeats in the proximal region5. Immediately subtelomeric lie families of unrelated repeat motifs (telomere-associated sequences) whose function, if any, is unknown6,7. In lower eukaryotes the formation and maintenance of telomeres may be mediated enzymatically (by telomerase)8 or by recombination9; in man the mechanisms are poorly understood, although telomerase has been identified in HeLa cells4. Here we describe an a thalassaemia10 mutation associated with terminal truncation of the short arm of chromosome 16 (within band 16pl3.3) to a site 50 kb distal to the α globin genes, and show that (TTAGGG)n has been added directly to the site of the break. The mutation is stably inherited, proving that telomeric DNA alone is sufficient to stabilize the broken chromosome end. This mechanism may occur in any genetic disease associated with chromosome truncation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage
BMC Biology Open Access 20 November 2021
-
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome
Nature Communications Open Access 24 February 2021
-
Genomic footprints of activated telomere maintenance mechanisms in cancer
Nature Communications Open Access 05 February 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Muller, H. J. Collect. Net. 13, 182–193 (1938).
Zakian, V. A. A. Rev. Genet. 23, 579–604 (1989).
Moyzis, R. K. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6622–6626 (1988).
Morin, G. B. Cell 59, 521–529 (1989).
Allshire, R. C., Dempster, M. & Hastie, N. D. Nucleic Acids Res. 17, 4611–4627 (1989).
Cheng, J.-F., Smith, C. L. & Cantor, C. R. Nucleic Acids Res. 17, 6109–6127 (1989).
de Lange, T. et al. Molec. cell. Biol 10, 518–527 (1990).
Yu, G.-L., Bradley, J. D., Attardi, L. D. & Blackburn, E. H. Nature 344, 126–132 (1990).
Wang, S.-S. & Zakian, V. A. Nature 345, 456–458 (1990).
Higgs, D. R. et al. Blood 73, 1081–1104 (1989).
Galanello, R., Paglietti, E., Melis, M. A., Giagu, L. & Cao, A. Acta Haematol. Basel 72, 34–36 (1984).
Yao, M.-C. & Yao, C.-H. Proc. natn. Acad. Sci. U.S.A. 78, 7436–7439 (1981).
Gusella, J. F. et al. Nature 318, 75–78 (1985).
Ledbetter, D. H. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5136–5140 (1989).
Harris, P. C., Barton, N. J., Higgs, D. R., Reeders, S. T. & Wilkie, A. O. M. Genomics 7, 195–206 (1990).
Wilkie, A. O. M. et al. Am. J. hum. Genet. 46, 1112–1126 (1990).
Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Cell 51, 975–985 (1987).
Higgs, D. R. et al. Genes Dev. (in the press).
Hatton, C. S. R. et al. Blood 76, 221–227 (1990).
Baroin, A., Prat, A. & Caron, F. Nucleic Acids Res. 15, 1717–1728 (1987).
Forney, J. D. & Blackburn, E. H. Molec. cell. Biol. 8, 251–258 (1988).
Spangler, E. A., Ryan, T. & Blackburn, E. H. Nucleic Acids Res. 16, 5569–5585 (1988).
Levis, R. W. Cell 58, 791–801 (1989).
Biessmann, H., Carter, S. B. & Mason, J. M. Proc natn. Acad. Sci. U.S.A. 87, 1758–1761 (1990).
Biessmann, H. et al. Cell 61, 663–673 (1990).
Corcoran, L. M., Thompson, J. K., Walliker, D. & Kemp, D. J. Cell 53, 807–813 (1988).
Pologe, L. G. & Ravetch, J. V. Cell 55, 869–874 (1988).
Cappai, R. et al. Molec. cell. Biol. 9, 3584–3587 (1989).
Watson, J. D. Nature New Biol. 239, 197–201 (1972).
Murray, A. W., Claus, T. E. & Szostak, J. W. Molec. cell. Biol. 8, 4642–4650 (1988).
Jarman, A. P. & Higgs, D. R. Am. J. hum. Genet. 43, 249–256 (1988).
Nicholls, R. D., Fischel-Ghodsian, N. & Higgs, D. R. Cell 49, 369–378 (1987).
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).
Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).
Sealey, P. G., Whittaker, P. A. & Southern, E. M. Nucleic Acids Res. 13, 1905–1922 (1985).
Chen, E. Y. & Seeburg, P. H. DNA 4, 165–170 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wilkie, A., Lamb, J., Harris, P. et al. A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346, 868–871 (1990). https://doi.org/10.1038/346868a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/346868a0
This article is cited by
-
Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage
BMC Biology (2021)
-
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome
Nature Communications (2021)
-
Genomic footprints of activated telomere maintenance mechanisms in cancer
Nature Communications (2020)
-
Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX
Scientific Reports (2016)
-
De Novo ring chromosome 11 and non-reciprocal translocation of 11p15.3-pter to 21qter in a patient with congenital heart disease
Molecular Cytogenetics (2015)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.