Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n

Abstract

THE instability of chromosomes with breaks induced by X-irradi-ation led to the proposal that the natural ends of chromosomes are capped by a specialized structure, the telomere1. Telomeres prevent end-to-end fusions and exonucleolytic degradation, enable the end of the linear DNA molecule to replicate, and function in cell division (reviewed in ref. 2). Human telomeric DNA comprises ˜2–20 kilobases (kb) of the tandemly repeated sequence (TTAGGG)n oriented 5′→3′ towards the end of the chromosome3,4, interspersed with variant repeats in the proximal region5. Immediately subtelomeric lie families of unrelated repeat motifs (telomere-associated sequences) whose function, if any, is unknown6,7. In lower eukaryotes the formation and maintenance of telomeres may be mediated enzymatically (by telomerase)8 or by recombination9; in man the mechanisms are poorly understood, although telomerase has been identified in HeLa cells4. Here we describe an a thalassaemia10 mutation associated with terminal truncation of the short arm of chromosome 16 (within band 16pl3.3) to a site 50 kb distal to the α globin genes, and show that (TTAGGG)n has been added directly to the site of the break. The mutation is stably inherited, proving that telomeric DNA alone is sufficient to stabilize the broken chromosome end. This mechanism may occur in any genetic disease associated with chromosome truncation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Muller, H. J. Collect. Net. 13, 182–193 (1938).

    Google Scholar 

  2. Zakian, V. A. A. Rev. Genet. 23, 579–604 (1989).

    Article  CAS  Google Scholar 

  3. Moyzis, R. K. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6622–6626 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Morin, G. B. Cell 59, 521–529 (1989).

    Article  CAS  Google Scholar 

  5. Allshire, R. C., Dempster, M. & Hastie, N. D. Nucleic Acids Res. 17, 4611–4627 (1989).

    Article  CAS  Google Scholar 

  6. Cheng, J.-F., Smith, C. L. & Cantor, C. R. Nucleic Acids Res. 17, 6109–6127 (1989).

    Article  CAS  Google Scholar 

  7. de Lange, T. et al. Molec. cell. Biol 10, 518–527 (1990).

    Article  CAS  Google Scholar 

  8. Yu, G.-L., Bradley, J. D., Attardi, L. D. & Blackburn, E. H. Nature 344, 126–132 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Wang, S.-S. & Zakian, V. A. Nature 345, 456–458 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Higgs, D. R. et al. Blood 73, 1081–1104 (1989).

    CAS  PubMed  Google Scholar 

  11. Galanello, R., Paglietti, E., Melis, M. A., Giagu, L. & Cao, A. Acta Haematol. Basel 72, 34–36 (1984).

    Article  CAS  Google Scholar 

  12. Yao, M.-C. & Yao, C.-H. Proc. natn. Acad. Sci. U.S.A. 78, 7436–7439 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Gusella, J. F. et al. Nature 318, 75–78 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Ledbetter, D. H. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5136–5140 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harris, P. C., Barton, N. J., Higgs, D. R., Reeders, S. T. & Wilkie, A. O. M. Genomics 7, 195–206 (1990).

    Article  CAS  Google Scholar 

  16. Wilkie, A. O. M. et al. Am. J. hum. Genet. 46, 1112–1126 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  18. Higgs, D. R. et al. Genes Dev. (in the press).

  19. Hatton, C. S. R. et al. Blood 76, 221–227 (1990).

    CAS  PubMed  Google Scholar 

  20. Baroin, A., Prat, A. & Caron, F. Nucleic Acids Res. 15, 1717–1728 (1987).

    Article  CAS  Google Scholar 

  21. Forney, J. D. & Blackburn, E. H. Molec. cell. Biol. 8, 251–258 (1988).

    Article  CAS  Google Scholar 

  22. Spangler, E. A., Ryan, T. & Blackburn, E. H. Nucleic Acids Res. 16, 5569–5585 (1988).

    Article  CAS  Google Scholar 

  23. Levis, R. W. Cell 58, 791–801 (1989).

    Article  CAS  Google Scholar 

  24. Biessmann, H., Carter, S. B. & Mason, J. M. Proc natn. Acad. Sci. U.S.A. 87, 1758–1761 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Biessmann, H. et al. Cell 61, 663–673 (1990).

    Article  CAS  Google Scholar 

  26. Corcoran, L. M., Thompson, J. K., Walliker, D. & Kemp, D. J. Cell 53, 807–813 (1988).

    Article  CAS  Google Scholar 

  27. Pologe, L. G. & Ravetch, J. V. Cell 55, 869–874 (1988).

    Article  CAS  Google Scholar 

  28. Cappai, R. et al. Molec. cell. Biol. 9, 3584–3587 (1989).

    Article  CAS  Google Scholar 

  29. Watson, J. D. Nature New Biol. 239, 197–201 (1972).

    Article  CAS  Google Scholar 

  30. Murray, A. W., Claus, T. E. & Szostak, J. W. Molec. cell. Biol. 8, 4642–4650 (1988).

    Article  CAS  Google Scholar 

  31. Jarman, A. P. & Higgs, D. R. Am. J. hum. Genet. 43, 249–256 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholls, R. D., Fischel-Ghodsian, N. & Higgs, D. R. Cell 49, 369–378 (1987).

    Article  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  34. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Sealey, P. G., Whittaker, P. A. & Southern, E. M. Nucleic Acids Res. 13, 1905–1922 (1985).

    Article  CAS  Google Scholar 

  36. Chen, E. Y. & Seeburg, P. H. DNA 4, 165–170 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkie, A., Lamb, J., Harris, P. et al. A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346, 868–871 (1990). https://doi.org/10.1038/346868a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346868a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing