Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure

Abstract

STOMATAL pores at the leaf surface regulate water loss during transpiration and CO2 uptake for photosynthesis through changes in the turgor of the surrounding guard cells. Such regulation occurs in response to a wide range of environmental stimuli (such as light, CO2 level and abscisic acid). These are thought to be transduced through changes in cytosolic calcium levels1–3, and several treatments causing stomatal closure are accompanied by increases in cytosolic Ca2+ (ref. 4), probably from mobilization of intracellular Ca2+ stores. We report here the use of the fluorescent Ca2+ indicator Fluo-3 (refs 5,6) to follow changes in stomatal aperture and cytoplasmic Ca2+ concentration as Ca2+ or inositol 1,4,5-trisphosphate (InsP3) are released into the cell from their caged (photoactivatable) forms6–9. Increasing Ca2+ concentration to greater than ˜600 nM induced stomatal closure. Similarly, release of InsP3 initiated influx of Ca2+ into the cytosol which was followed by stomatal closure. These results suggest that Ca2+ and InsP3 may act as second messengers leading to guard cell closure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Silva, D. L. R., Hetherington, A. M. & Mansfield, T. R. New Phytol. 100, 473–482 (1985).

    Article  CAS  Google Scholar 

  2. Schwartz, A., Ilan, A. & Grantz, D. A. Pl. Physiol. 87, 583–587 (1988).

    Article  CAS  Google Scholar 

  3. MacRobbie, E. A. C. Planta 178, 231–241 (1989).

    Article  CAS  Google Scholar 

  4. McAinsh, M. R., Brownlee, C. & Hetherington, A. M. Nature 343, 186–188 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Minta, A., Kao, J. P. Y. & Tsien, R. Y. J. biol. Chem. 264, 8171–8178 (1989).

    CAS  PubMed  Google Scholar 

  6. Kao, J. P. Y., Harootunian, A. C. & Tsien, R. Y. J. biol. Chem. 264, 8179–8184 (1989).

    CAS  PubMed  Google Scholar 

  7. Tsien, R. Y. & Zucker, R. S. Biophys. J. 50, 843–853 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A. & Tsien, R. Y. J. Am. Chem. Soc. 110, 3212–3220 (1988).

    Article  CAS  Google Scholar 

  9. Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P. & Trentham, D. R. Nature 327, 249–252 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Cobbold, P. H. & Rink, T. J. Biochem. J. 248, 313–328 (1987).

    Article  CAS  Google Scholar 

  11. Hedrich, R. & Neher, E. Nature 329, 833–835 (1987).

    Article  ADS  Google Scholar 

  12. Hedrich, R. et al. Bot. Acta 101, 7–13 (1988).

    Article  CAS  Google Scholar 

  13. Keller, B. U., Hedrich, R. & Raschke, K. Nature 341, 450–453 (1989).

    Article  ADS  Google Scholar 

  14. Berridge, M. J. & Irvine, F. F. Nature 341, 197–205 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Canut, H., Carrasco, A., Graziana, A., Boudet, A. M. & Ranjeva, R. FEBS Lett. 253, 173–177 (1989).

    Article  CAS  Google Scholar 

  16. Schumaker, K. S. & Sze, H. J. biol. Chem. 262, 3944–3946 (1987).

    CAS  Google Scholar 

  17. Alexandre, J., Lassalles, J. P. & Kado, R. T. Nature 343, 567–570 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Walker, J. W., Feeney, J. & Trentham, D. R. Biochemistry 28, 3272–3280 (1989).

    Article  CAS  Google Scholar 

  19. Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals 131–134 (Molecular Probes Inc., Eugene, Oregon, 1989).

    Google Scholar 

  20. De Silva, D.L.R., Cox, R. C., Hetherington, A. M. & Mansfield, T. A. New Phytol. 104, 41–52 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilroy, S., Read, N. & Trewavas, A. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346, 769–771 (1990). https://doi.org/10.1038/346769a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346769a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing