Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pyrite formation linked with hydrogen evolution under anaerobic conditions


THE formation of pyrite (FeS2), an important factor in determining the global redox balance1, has recently attracted biological interest as a possible direct source of energy for early life2–5. The theory implies that carbon dioxide fixation, in competition with hydrogen formation, can serve as the electron sink for pyrite formation and it seems to be supported by the detection of minute grains of pyrite and iron sulphides inside bacteria5–8. Yet it clashes with the conventional assumption that elemental sulphur or a sulphur equivalent (polysulphide or thiosulphate) is the mandatory oxidant for pyrite formation9,10. It has been stressed that the reaction FeS + H2S→FeS2 + H2 (with H+ as the oxidant) has "never been observed … during several years of experimentation"10. Here we report the formation of both pyrite and molecular hydrogen under fastidiously anaerobic conditions in the aqueous system of FeS and H2S.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Jorgensen, B. in Autotrophic Bacteria (eds Schlegel, H. G. & Bowien, B.) 117–146 (Science Tech, Madison, 1989).

    Google Scholar 

  2. Wächtershäuser, G. Syst. appl. Microbiol. 10, 207–210 (1988).

    Article  Google Scholar 

  3. Wächtershäuser, G. Microbiol. Rev. 52, 452–484 (1988).

    PubMed  PubMed Central  Google Scholar 

  4. Wächtershäuser, G. Proc. natn. Acad. Sci. U.S.A. 87, 200–204 (1990).

    Article  ADS  Google Scholar 

  5. Popper, K. R. Nature 344, 387 (1990).

    Article  ADS  Google Scholar 

  6. Farina, M., Esquivel, D. M. S. & Lins de Barros, H. G. P. Nature 343, 256–258 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A. & Jannasch, H. W. Nature 343, 258–261 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Williams, R. J. P. Nature 343, 213–214 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Roberts, W. M. B., Walker, A. L. & Buchanan, A. S. Miner. Deposita 4, 18–29 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Berner, R. A. Am. J. Sci. 268, 1–23 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Hall, A. J. Miner. Mag. 50, 223–229 (1986).

    Article  CAS  Google Scholar 

  12. Boesen, C. & Postma, D. Am. J. Sci. 288, 575–603 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Allison, P. A. in Palaeobiology (eds Briggs, D. E. G. & Crowther, P. R.) 253–255 (Blackwell Scientific, Oxford, 1990).

    Google Scholar 

  14. Schlegel, H. G. in Autotrophic Bacteria (eds Schlegel, H. G. & Bowien, B.) 305–330 (Science Tech, Madison 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drobner, E., Huber, H., Wächtershäuser, G. et al. Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346, 742–744 (1990).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing