Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. letters
  3. article
Transcriptional activation domain of the muscle-specific gene-regulatory protein myf5
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The LIM domain protein nTRIP6 modulates the dynamics of myogenic differentiation

18 June 2021

Tannaz Norizadeh Abbariki, Zita Gonda, … Olivier Kassel

A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes

24 February 2022

Matthieu Dos Santos, Stéphanie Backer, … Pascal Maire

Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology

04 December 2020

Nan Zhang, Julen Mendieta-Esteban, … Brian David Dynlacht

Poly(ADP-ribose) Polymerase 1 (PARP1) restrains MyoD-dependent gene expression during muscle differentiation

15 September 2020

Francesca Matteini, Oriella Andresini, … Rossella Maione

CCAAT/Enhancer Binding Protein β inhibits myogenic differentiation via ID3

09 November 2018

Hamood AlSudais, Neena Lala-Tabbert & Nadine Wiper-Bergeron

Zfp422 promotes skeletal muscle differentiation by regulating EphA7 to induce appropriate myoblast apoptosis

04 November 2019

Yaping Nie, Shufang Cai, … Delin Mo

NLK is required for Ras/ERK/SRF/ELK signaling to tune skeletal muscle development by phosphorylating SRF and antagonizing the SRF/MKL pathway

10 January 2022

Shang-Ze Li, Ze-Yan Zhang, … Xiao-Dong Zhang

MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation

19 December 2019

Yu Zhao, Jiajian Zhou, … Huating Wang

Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes

30 March 2020

Qian Yi Lee, Moritz Mall, … Marius Wernig

Download PDF
  • Published: 16 August 1990

Transcriptional activation domain of the muscle-specific gene-regulatory protein myf5

  • Thomas Braun1,
  • Barbara Winter1,
  • Eva Bober1 &
  • …
  • Hans H. Arnold1 na1 

Nature volume 346, pages 663–665 (1990)Cite this article

  • 245 Accesses

  • 113 Citations

  • Metrics details

Abstract

THE human muscle determination factor myf5, like MyoD (ref. 1) and other members of the family of skeletal muscle-specific regulatory proteins2–7, contains a highly conserved putative helix–loop–helix domain8. In MyoD this motif is required for the initiation of myogenesis in C3H mouse 10T1/2 fibroblasts9 and other non-muscle cells10 as well as for transcriptional activation of muscle genes. High affinity DNA binding of MyoD to regulatory DNA elements in muscle genes11,12 requires the formation of heterodimers with ubiquitous helix–loop–helix proteins such as E12 or E47 (refs 13, 14). To investigate the potential of myf5 as a transcription factor, we have fused the GAL4 DNA-binding domain to various parts of the myf5 protein and analysed the transactivation of a GAL4 reporter plasmid. Here we report that myf5 contains an intrinsic transcriptional activation domain which is distinct from the helix–loop–helix motif. The predominant trans-activating effect is associated with the C-terminal half of the myf5 molecule. High-affinity sequence-specific DNA binding of myf5 also requires hetero-oligomeric association with the enhancer-binding protein E12 to confer muscle-specific transactivation.

References

  1. Davis, R. L., Weintraub, H. & Lassar, A. B. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  2. Wright, W. E., Sassoon, D. A. & Lin, V. K. Cell 56, 607–617 (1989).

    Article  CAS  Google Scholar 

  3. Edmondson, D. G. & Olson, E. N. Genes Dev. 3, 628–640 (1989).

    Article  CAS  Google Scholar 

  4. Braun, T. et al. EMBO J. 8, 3617–3625 (1989).

    Article  CAS  Google Scholar 

  5. Rhodes, S. J. & Konieczny, S. Genes Dev. 3, 2050–2061 (1989).

    Article  CAS  Google Scholar 

  6. Braun, T., Bober, E., Winter, B., Rosentnal, N. & Arnold, H. H. EMBO J. 9, 821–831 (1990).

    Article  CAS  Google Scholar 

  7. Miner, J. H. & Wold, B. Proc. natn. Acad. Sci. U.S.A. 87, 1089–1093 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Braun, T., Buschhausen-Denker, G., Tannich, E. & Arnold, H. H. EMBO J. 8, 701–709 (1989).

    Article  CAS  Google Scholar 

  9. Tapscott, S. J. et al. Science 242, 405–411 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Weintraub, H. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5434–5438 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Lassar, A. et al. Cell 58, 823–831 (1989).

    Article  CAS  Google Scholar 

  12. Donoghue, M. et al. Genes Dev. 2, 1779–1790 (1988).

    Article  CAS  Google Scholar 

  13. Murre, C., McCaw, P. S. & Baltimore, D. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  14. Murre, C. et al. Cell 58, 537–544 (1989).

    Article  CAS  Google Scholar 

  15. Schubert, D. et al. J. Cell Biol. 61, 398–413 (1974).

    Article  CAS  Google Scholar 

  16. Davis, R. L. et al. Cell 60, 733–746 (1990).

    Article  CAS  Google Scholar 

  17. Webster, N., Jin, J. R., Green, S., Hollis, M. & Chambon, P. Cell 52, 169–178 (1988).

    Article  CAS  Google Scholar 

  18. Henthorn, P., Kiledjian, M. & Kadesch, T. Science 247, 467–470 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Brennan, T. J. & Olson, E. N. Genes Dev. 4, 582–595 (1990).

    Article  CAS  Google Scholar 

  20. Thayer, M. J. et al. Cell 58, 241–248 (1989).

    Article  CAS  Google Scholar 

  21. Harland, R. & Weintraub, H. J. Cell Biol. 101, 1094–1099 (1985).

    Article  CAS  Google Scholar 

  22. Edlund, T. et al. Science 230, 912–916 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Braun, T. et al. Molec. cell. Biol. 9, 2513–2525 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. Hans H. Arnold: To whom correspondence should be addressed.

Authors and Affiliations

  1. Department of Toxicology, Medical School, University of Hamburg, 2000 Hamburg 13, Grindelallee, 117, FRG

    Thomas Braun, Barbara Winter, Eva Bober & Hans H. Arnold

Authors
  1. Thomas Braun
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Barbara Winter
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Eva Bober
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Hans H. Arnold
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braun, T., Winter, B., Bober, E. et al. Transcriptional activation domain of the muscle-specific gene-regulatory protein myf5. Nature 346, 663–665 (1990). https://doi.org/10.1038/346663a0

Download citation

  • Received: 19 March 1990

  • Accepted: 01 June 1990

  • Issue Date: 16 August 1990

  • DOI: https://doi.org/10.1038/346663a0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Human aging in the post-GWAS era: further insights reveal potential regulatory variants

    • Syed Aleem Haider
    • Muhammad Faisal

    Biogerontology (2015)

  • Effect of the g.–723G→T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle

    • Dagmara Robakowska-Hyżorek
    • Jolanta Oprządek
    • Lech Zwierzchowski

    Biochemical Genetics (2010)

  • Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems

    • Ingrid Furlan
    • Rosely Oliveira Godinho

    British Journal of Pharmacology (2005)

  • NSCL-1 and NSCL-2 synergistically determine the fate of GnRH-1 neurons and control necdin gene expression

    • Marcus Krüger
    • Karen Ruschke
    • Thomas Braun

    The EMBO Journal (2004)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Download PDF

Advertisement

Explore content

  • Research articles
  • News
  • Opinion
  • Research Analysis
  • Careers
  • Books & Culture
  • Podcasts
  • Videos
  • Current issue
  • Browse issues
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Staff
  • About the Editors
  • Journal Information
  • Our publishing models
  • Editorial Values Statement
  • Journal Metrics
  • Awards
  • Contact
  • Editorial policies
  • History of Nature
  • Send a news tip

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature (Nature) ISSN 1476-4687 (online) ISSN 0028-0836 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Nature Research Academies
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • California Privacy Statement
Springer Nature

© 2023 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing