Abstract
THE Arc represser1–3, which is involved in the switch between lysis and lysogeny of Salmonella bacteriophage P22, does not belong to any of the known classes of DNA-binding proteins4,5. Mutagenesis studies6 show that the DNA-binding region is located in the 15 N-terminal amino-acid residues. We have now determined the three-dimensional structure of the Arc dimer from an extensive set of inter proton-distance data obtained from 1H NMR spectroscopy. A priori, intra- and inter-monomer nuclear Overhauser effects (NOEs) cannot be distinguished for a symmetric dimer. But by using the homology with the Escherichia coil Met represser7 we could interpret the NOEs unambiguously in an iterative structure refinement procedure. The final structure satisfies a large set of NOE constraints (1,352 for the dimer). It shows a strongly intertwined dimer, in which residues 8–14 of different monomers form an antiparallel β-sheet. A model for the Arc represser–operator complex can account for all available biochemical and genetic data. In this model two Arc dimers bind with their β-sheet regions in successive major grooves on one side of the DNA helix, similar to the Met repressor interaction. Thus, Arc and Met repressors are members of the same family of proteins, which contain an antiparallel β-sheet as the DNA-binding motif.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Structural and mutational analysis of MazE6-operator DNA complex provide insights into autoregulation of toxin-antitoxin systems
Communications Biology Open Access 15 September 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Susskind, M. M. J. molec. Biol. 138, 685–713 (1980).
Sauer, R. T., Krovatin, W., DeAnda, J., Youderian, P. & Susskind, M. M. J. molec. Biol. 168, 699–713 (1983).
Vershon, A. K., Youderian, P., Susskind, M. M. & Sauer, R. T. J. biol. Chem. 260, 12124–12129 (1985).
Knight, K. L., Bowie, J. U., Vershon, A. K., Kelley, R. D. & Sauer, R. T. J. biol. Chem. 264, 3639–3642 (1989).
Pabo, C. O. & Sauer, R. T. A. Rev. Biochem. 53, 293–321 (1984).
Bowie, J. U. & Sauer, R. T. Proc. natn. Acad. Sci. U.S.A. 86, 2152–2156 (1989).
Rafferty, J. B., Somers, W. S., Saint-Girons, I. & Phillips, S. E. V. Nature 341, 705–710 (1989).
Zagorski, M. G., Bowie, J. U., Vershon, A. K., Sauer, R. T. & Patel, D. J. Biochemistry 28, 9813–9825 (1989).
Breg, J. N., Boelens, R., George, A. V. E. & Kaptein, R. Biochemistry 28, 9826–9833 (1989).
Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York 1986).
Kaptein, R., Boelens, R., Scheek, R. M. & Van Gunsteren, W. F. Biochemistry 27, 5389–5395 (1988).
Vershon, A. K., Kelley, R. D. & Sauer, R. T. J. biol. Chem. 264, 3267–3273 (1989).
Knight, K. L. & Sauer, R. T. Proc. natn. Acad. Sci. U.S.A. 86, 797–801 (1989).
Youderian, P., Vershon, A. K., Bouvier, S., Sauer, R. T. & Susskind, M. M. Cell 35, 777–783 (1983).
Knight, K. L. & Sauer, R. T. J. biol. Chem. 264, 13706–13710 (1989).
Vershon, A. K., Liao, S.-M., McClure, W. R. & Sauer, R. T. J. molec. Biol. 195, 311–322 (1987).
Vershon, A. K., Liao, S.-M., McClure, W. R. & Sauer, R. T. J. molec. Biol. 195, 323–331 (1987).
Bowie, J. U. & Sauer, R. T. J. molec. Biol. 211, 5–6 (1990).
Evans, R. M. & Hollenberg, S. M. Cell 52, 1–3 (1988).
Vinson, C. R., Sigler, P. B. & McKnight, S. L. Science 246, 911–916 (1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Breg, J., van Opheusden, J., Burgering, M. et al. Structure of Arc represser in solution: evidence for a family of β-sheet DNA-binding proteins. Nature 346, 586–589 (1990). https://doi.org/10.1038/346586a0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/346586a0
This article is cited by
-
Structural and mutational analysis of MazE6-operator DNA complex provide insights into autoregulation of toxin-antitoxin systems
Communications Biology (2022)
-
Ribbon–helix–helix transcription factors: variations on a theme
Nature Reviews Microbiology (2007)
-
Nucleotide-dependent substrate recognition by the AAA+ HslUV protease
Nature Structural & Molecular Biology (2005)
-
Crystal structure of the nickel-responsive transcription factor NikR
Nature Structural & Molecular Biology (2003)
-
Are buried salt bridges important for protein stability and conformational specificity?
Nature Structural & Molecular Biology (1995)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.