Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents

Abstract

SYNAPTIC release of glutamate results in a two component excitatory postsynaptic current (e.p.s.c.) at many vertebrate central synapses1–6. Non-N-methyl-D-aspartate receptors mediate a component that has a rapid onset and decay while the component mediated by N-methyl-D-aspartate (NMDA) receptors has a slow rise-time and a decay of several hundred milliseconds, 100 times longer than the mean open time of NMDA channels7–9. The slow decay of the NMDA-mediated e.p.s.c. could be due to residual glutamate in the synaptic cleft resulting in repeated binding and activation of NMDA receptors. However, in cultured hippocampal neurons, we find that the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate has no effect on the slow e.p.s.c. when rapidly applied after activation of the synapse, suggesting that rebinding of glutamate does not occur. In addition, a brief pulse of glutamate to an outside-out membrane patch results in openings of NMDA channels that persist for hundreds of milliseconds, indicating that glutamate can remain bound for this period. These results imply that a brief pulse of glutamate in the synaptic cleft is sufficient to account for the slow e.p.s.c.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Forsythe, I. D. & Westbrook, G. L. J. Physiol., Lond. 396, 515–533 (1988).

    Article  CAS  Google Scholar 

  2. Westbrook, G. L. & Jahr, C. E. Seminars in the Neurosciences 1, 103–114 (1989).

    Google Scholar 

  3. Dale, N. & Roberts, A. J. Physiol., Lond. 363, 35–59 (1985).

    Article  CAS  Google Scholar 

  4. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

    Article  CAS  ADS  Google Scholar 

  5. Collingridge, G. L., Herron, C. E. & Lester, R. A. J. J. Physiol., Lond. 399, 283–300 (1988).

    Article  CAS  Google Scholar 

  6. Hestrin, S., Nicoll, R. A., Perkel, D. J. & Sah, P. J. Physiol., Lond. 422, 203–225 (1990).

    Article  CAS  Google Scholar 

  7. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  CAS  ADS  Google Scholar 

  8. Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

    Article  CAS  ADS  Google Scholar 

  9. Cull-Candy, S. G. & Usowicz, M. M. Nature 325, 525–528 (1987).

    Article  CAS  ADS  Google Scholar 

  10. Blake, J. F., Brown, M. W. & Collingridge, G. L. Neurosci. Lett. 89, 182–186 (1988).

    Article  CAS  Google Scholar 

  11. Andreasen, M., Lambert, J. D. C. & Jensen, M. S. J. Physiol., Lond. 414, 317–336 (1989).

    Article  CAS  Google Scholar 

  12. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  13. Wigstrom, H., Gustafsson, B. & Huang, Y-Y. Acta physiol. scand. 124, 475–478 (1985).

    Article  CAS  Google Scholar 

  14. Sernagor, E., Kuhn, D., Vyklicky, L. & Mayer, M. Neuron 2, 1221–1227 (1989).

    Article  CAS  Google Scholar 

  15. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  CAS  ADS  Google Scholar 

  16. Colquhoun, D. & Ogden, D. C. J. Physiol., Lond. 395, 131–159 (1988).

    Article  CAS  Google Scholar 

  17. Patneau, D. K. & Mayer, M. L. J. Neurosci. (in the press).

  18. Olverman, H. J., Jones, A. W. & Watkins, J. C. Nature 307, 460–462 (1984).

    Article  CAS  ADS  Google Scholar 

  19. Colquhoun, D., Large, W. A. & Rang, H. P. J. Physiol., Lond. 266, 361–395 (1977).

    Article  CAS  Google Scholar 

  20. Trussell, L. O. & Fischbach, G. D. Neuron 3, 209–218 (1989).

    Article  CAS  Google Scholar 

  21. Tang, C. M., Dichter, M. & Morad, M. Science 243, 1474–1477 (1989).

    Article  CAS  ADS  Google Scholar 

  22. Forsythe, I. D. & Clements, J. D. J. Physiol., Lond. (in the press).

  23. Lester, R. A. J., Quarum, M. L., Parker, J. D., Weber, E. & Jahr, C. E. Molec. Pharmac. 35, 565–570 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lester, R., Clements, J., Westbrook, G. et al. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990). https://doi.org/10.1038/346565a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346565a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing