Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a cannabinoid receptor and functional expression of the cloned cDNA


MARIJUANA and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner1,2. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known3. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner4–7. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids8. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Hollister, L. E. Pharmac. Rev. 38, 1–20 (1986).

    CAS  Google Scholar 

  2. Martin, B. R. Pharmac. Rev. 38, 45–74 (1986).

    CAS  Google Scholar 

  3. Dewey, W. L. Pharmac. Rev. 38, 151–178 (1986).

    CAS  Google Scholar 

  4. Howlett, A. C. Molec. Pharmacol. 27, 429–436 (1985).

    CAS  Google Scholar 

  5. Howlett, A. C. & Fleming, R. M. Molec. Pharmacol. 26, 532–538 (1984).

    CAS  Google Scholar 

  6. Howlett, A. C., Qualy, J. M. & Khachatrian, L. L. Molec. Pharmacol. 29, 307–313 (1986).

    CAS  Google Scholar 

  7. Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S. & Howlett, A. C. Molec. Pharmacol. 34, 605–613 (1988).

    CAS  Google Scholar 

  8. Howlett, A. C. Neuropharmacology 26, 507–512 (1987).

    Article  CAS  Google Scholar 

  9. Bonner, T. I., Buckley, N. J., Young, A. C. & Brann, M. R. Science 237, 527–532 (1987).

    Article  CAS  ADS  Google Scholar 

  10. Nirenburg, M. et al. Science 222, 794–799 (1983).

    Article  ADS  Google Scholar 

  11. Devane, W. A., Spain, J. W., Coscia, C. J. & Howlett, A. C. J. Neurochem. 46, 1925–1935 (1986).

    Google Scholar 

  12. Herkenham, M. et al. Proc. natn. Acad. Scl. U.S.A. 87, 1932–1936 (1990).

    Article  CAS  ADS  Google Scholar 

  13. Bidaut-Russell, M., Devane, W. A. & Howlett, A. C. J. Neurochem. 55, 21–26 (1990).

    Article  CAS  Google Scholar 

  14. Howlett, A. C., Johnson, M. R., Melvin, L. S. & Milne, G. M. Molec. Pharmacol. 33, 297–302 (1988).

    CAS  Google Scholar 

  15. Razdan, R. K. Pharmac. Rev. 38, 75–149 (1986).

    CAS  Google Scholar 

  16. Gilman, A. G. Cell 36, 577–579 (1984).

    Article  CAS  Google Scholar 

  17. Lawrence, D. K. & Gill, E. W. Molec. Pharmacol. 11, 595–602 (1975).

    CAS  Google Scholar 

  18. Hillard, C. J., Harris, R. A. & Bloom, A. S. J. Pharmac. exp. Ther. 232, 579–588 (1985).

    CAS  Google Scholar 

  19. Masu, Y. et al. Nature 329, 836–838 (1987).

    Article  CAS  ADS  Google Scholar 

  20. McFarland, K. C. et al. Science 245, 494–499 (1989).

    Article  CAS  ADS  Google Scholar 

  21. Loosfelt, H. et al. Science 245, 525–528 (1989).

    Article  CAS  ADS  Google Scholar 

  22. Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Cell 45, 711–719 (1986).

    Article  CAS  Google Scholar 

  23. Karnik, S. S., Sakmar, T. P., Chen, H.-B. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 85, 8459–8463 (1988).

    Article  CAS  ADS  Google Scholar 

  24. Okayama, H. & Berg, P. Molec. cell. Biol. 3, 280–289 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  26. Young, W. S. III, Bonner, T. I. & Brann, M. R. Proc. natn. Acad. Sci. U.S.A. 83, 9827–9831 (1986).

    Article  CAS  ADS  Google Scholar 

  27. Young, W. S. III, Warden, M. & Mezey, E. Neuroendocrinology 46, 439–444 (1987).

    Article  Google Scholar 

  28. Chen, C. & Okayama, H. Molec. cell. Biol. 7, 2745–2752 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brooker, G., Harper, J. F., Terasaki, W. L. & Moylan, R. D. Adv. Cyclic Nucleotide Res. 10, 1–33 (1979).

    CAS  PubMed  Google Scholar 

  30. Borst, S. & Conolly, M. Life Sci. 43, 1021–1030 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, L., Lolait, S., Brownstein, M. et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing