Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microorganisms associated with chromosome destruction and reproductive isolation between two insect species


MICROORGANISMS have been implicated in causing cytoplasmic incompatibility in a variety of insect species, including mosquitoes, fruitflies, beetles and wasps1–17. The effect is typically unidirectional: incompatible crosses produce no progeny1–11 or sterile males12–14, whereas the reciprocal crosses produce normal progeny. The parasitic wasp Nasonia vitripennis is one of the few species in which the cytogenetic mechanism of incompatibility is known. In this species the paternal chromosome set forms a tangled mass in a fertilized egg and is eventually lost16. Here we report that cytoplasmic microorganisms are associated with complete bidirectional incompatibility between N. vitripennis and a closely related sympatric species, N. giraulti. Microorganisms can be seen in the eggs of both species. Hybrid offspring are normally not produced in crosses between the two species, but do occur after elimination of the microorganisms by antibiotic treatment. A cytogenetic and genetic study shows that bidirectional interspecific incompatibility is due to improper condensation of the paternal chromosomes. Microorganism-mediated reproductive isolation is of interest because it could provide a rapid mode of speciation18,19. The mechanism of incompatibility in Nasonia is also of interest as a potential tool for studying chromosome imprinting and chromosome condensation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Hoffman, A. A., Turelli, M. & Simmons, G. M. Evolution 40, 692–701 (1986).

    Article  Google Scholar 

  2. Hoffman, A. A. Entomol. Exp. Appl. 48, 61–67 (1988).

    Article  Google Scholar 

  3. Hsiao, T. H. & Hsiao, C. Entomol. Exp. Appl. 37, 155–159 (1985).

    Article  Google Scholar 

  4. Wade, M. J. & Stevens, L. Science 227, 527–528 (1989).

    Article  ADS  Google Scholar 

  5. Binnington, K. C. & Hoffmann, A. A. J. invert Pathol. 54, 344–352 (1989).

    Article  Google Scholar 

  6. Trpis, M., Perrone, J. B., Reissig, M. & Parker, K. L. J. Hered. 72, 313–317 (1981).

    Article  Google Scholar 

  7. Yen, J. H. & Barr, A. R. Nature 232, 657–658 (1971).

    Article  CAS  ADS  Google Scholar 

  8. Hsiao, T. H. & Hsiao, C. J. invert. Pathol. 45, 244–246 (1985).

    Article  Google Scholar 

  9. O'Neill, S. L. J. invert. Pathol. 53, 132–134 (1989).

    Article  Google Scholar 

  10. Yen, J. H. & Barr, A. R. J. invert. Pathol. 22, 242–250 (1973).

    Article  CAS  Google Scholar 

  11. Kellen, W. R., Hoffman, D. F. & Kwock, R. A. J. invert. Pathol. 37, 273–283 (1981).

    Article  Google Scholar 

  12. Dobzhansky, T. & Paulovsky, O. Genetics 55, 141–156 (1967).

    Article  CAS  Google Scholar 

  13. Ehrman, L. & Kernaghan, R. P. J. Hered. 62, 67–71 (1971).

    Article  CAS  Google Scholar 

  14. Williamson, D. L., Ehrman, L. & Kernaghan, R. P. Proc. natn. Acad. Sci. U.S.A 68, 2158–2160 (1971).

    Article  CAS  ADS  Google Scholar 

  15. Richardson, P. M., Holmes, W. P. & Saul II, G. B. J. invert. Pathol. 50, 176–183 (1987).

    Article  CAS  Google Scholar 

  16. Ryan, S. L. & Saul II, G. B. Molec. gen. Genet. 103, 29–36 (1968).

    Article  CAS  Google Scholar 

  17. Conner, G. W. & Saul II, G. B. J. Hered. 77, 211–213 (1986).

    Article  Google Scholar 

  18. Laven, H., Wright, J. W. & Pal, R. in Genetics of Insect Vectors of Diseases (Elsevier, Amsterdam, 1967).

    Google Scholar 

  19. Thompson, J. N. Biol. J. Linn. Soc. 32, 385–393 (1987).

    Article  Google Scholar 

  20. Whiting, A. R. Q. Rev. Biol. 42, 333–406 (1967).

    Article  Google Scholar 

  21. Werren, J. H. Evolution 37, 116–124 (1983).

    Article  Google Scholar 

  22. Darling, D. C. & Werren, J. H. Ann. Entomol. Soc. Amer. 83, 352–370 (1990).

    Article  Google Scholar 

  23. Werren, J. H., Nur, U. & Eickbush, D. Nature 327, 75–76 (1987).

    Article  CAS  ADS  Google Scholar 

  24. Caspari, E. & Watson, G. S. Evolution 13, 568–570 (1959).

    Article  Google Scholar 

  25. Laven, H. Z. Vererbungslehre 88, 478–516 (1957).

    Google Scholar 

  26. Subbarao, S. K., Krishnamurthy, B. S., Curtis, C. F., Adak, T. & Chandrahas, R. K. Genetics 87, 381–390 (1977).

    Article  CAS  Google Scholar 

  27. Nur, U., Werren, J. H., Eickbush, D. G., Burke, W. B. & Eickbush, T. H. Science 240, 512–514 (1988).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Breeuwer, J., Werren, J. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346, 558–560 (1990).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing