Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Triton's streaks as windblown dust


THE encounter of the Voyager 2 spacecraft with Neptune's satellite Triton revealed many 'dark' (about 10–20% darker than the adjacent frost) surface streaks in Triton's southern hemisphere1, resembling the streaks that are due to windblown dust on Mars2. It seems therefore that dust transport by winds in Triton's tenuous atmosphere is required, the main question being the mechanism for raising dust from the surface or sub-surface. The two obvious candidates are geyser-like eruptions and direct lofting by surface winds1. Here we show that, despite Triton's tenuous (16±3 µbar) atmosphere3, low-cohesion grains with diameters of 5 µm, may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds4 of l0ms-1. (The wind velocities needed to lift grains as cohesive as those found on Earth, however, are implausibly high.) For erupting plumes, we show that dust-settling timescales and expected wind velocities yield streak length scales in good agreement with those observed. Both candidate mechanisms therefore seem to be consistent with present observations of Triton.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Smith, B. A. et al. Science 246, 1422–1449 (1989).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Sagan, C. et al. Icarus 17, 346–372 (1972).

    ADS  Article  Google Scholar 

  3. 3

    Tyler, G. L. et al. Science 246, 1466–1472 (1989).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ingersoll, A. P. Nature 344, 315–317 (1990).

    ADS  Article  Google Scholar 

  5. 5

    Sagan, C. & Pollack, J. B. Smithson. astrophys. Obs. Spec. Rep. 255 (1967).

  6. 6

    Sagan, C. & Pollack, J. B. Nature 223, 791–794 (1969).

    ADS  Article  Google Scholar 

  7. 7

    Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Chapman & Hall, London, 1954).

    Google Scholar 

  8. 8

    Sagan, C. et al. J. geophys. Res. 78, 4163–4196 (1973).

    ADS  Article  Google Scholar 

  9. 9

    Thomas, P., Veverka, J., Lee, S. & Bloom, A. Icarus 45, 124–153 (1981).

    ADS  Article  Google Scholar 

  10. 10

    Sagan, C. & Bagnold, R. A. Icarus 26, 209–218 (1975).

    ADS  Article  Google Scholar 

  11. 11

    Iversen, J. D., Pollack, J. B., Greeley, R. & White, B. R. Icarus 29, 381–393 (1976).

    ADS  Article  Google Scholar 

  12. 12

    Pollack, J. B., Haberle, R., Greeley, R. & Iversen, J. Icarus 29, 395–417 (1976).

    ADS  Article  Google Scholar 

  13. 13

    Iversen, J. D. & White, B. R. Sedimentology 29, 111–119 (1982).

    ADS  Article  Google Scholar 

  14. 14

    Greeley, R. & Iversen, J. D. Wind as a Geological Process (Cambridge University Press, 1985).

    Book  Google Scholar 

  15. 15

    Thompson, W. R., Murray, B., Khare, B. N. & Sagan, C. J. geophys. Res. 92, 14933–14947 (1987).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Khare, B. N. et al. Icarus 79, 350–361 (1989).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Hansen, C. et al. Geophys. Res. Lett. (submitted).

  18. 18

    Conrath, B. et al. Science 246, 1454–1458 (1989).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Carr, M. H. The Surface of Mars (Yale University Press, 1981).

    Google Scholar 

  20. 20

    Simonelli, D. P. et al. Icarus 82, 1–35 (1989).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Prokhavatilov, A. I. & Yantsevich, L. D. Soviet J. low-temp. Phys. 9, 94–97 (1983).

    Google Scholar 

  22. 22

    Sagan, C., Thompson, W. R. & Khare, B. N. in The Search for Extraterrestrial Life (ed. Papagiannis, M. D.) 107–121 (Reidel, Boston, 1985).

    Book  Google Scholar 

  23. 23

    Gregg, S. J. The Surface Chemistry of Solids Ch. 3 (Chapman & Hall, London, 1961).

    Google Scholar 

  24. 24

    Pye, K. Aeolian Dust and Dust Deposits Ch. 3 (Academic, London, 1987).

    Google Scholar 

  25. 25

    Mitchell, J. et al. Proc. Third Lunar Sci. Conf. Vol. 3 (ed. Criswell, D. R.) 3235–3253 (MIT Press, Cambridge, 1972).

    Google Scholar 

  26. 26

    Lindsay, J. F. Lunar Stratigraphy and Sedimentology Ch. 6 (Elsevier Scientific, New York, 1976).

    Google Scholar 

  27. 27

    Cruikshank, D. P., Brown, R. H. & Clark, R. N. Icarus 58, 293–305 (1984).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kitchener, J. A. in Powders in Industry 405–410 (Soc. chem. Ind., London, 1961).

    Google Scholar 

  29. 29

    Sagan, C. et al. Icarus 22, 24–47 (1974).

    ADS  Article  Google Scholar 

  30. 30

    Lee, S. W. & Thomas, P. C. Icarus 44, 280–290 (1980).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Atkins, P. W. Physical Chemistry (Freeman, New York, 1986).

    Google Scholar 

  32. 32

    Epstein, P. S. Phys. Rev. 23, 710–733 (1924).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Kennard, E. H. Kinetic Theory of Gases (McGraw-Hill, New York, 1938).

    Google Scholar 

  34. 34

    Clark, R. Icarus 49, 244–257 (1982).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sagan, C., Chyba, C. Triton's streaks as windblown dust. Nature 346, 546–548 (1990).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing