Prostaglandins stimulate calcium-dependent glutamate release in astrocytes

Abstract

Astrocytes in the brain form an intimately associated network with neurons. They respond to neuronal activity and synaptically released glutamate by raising intracellular calcium concentration ([Ca2+]i)1,2 which could represent the start of back-signalling to neurons3,4,5. Here we show that coactivation of the AMPA/kainate and metabotropic glutamate receptors (mGluRs) on astrocytes stimulates these cells to release glutamate through a Ca2+-dependent process mediated by prostaglandins. Pharmacological inhibition of prostaglandin synthesis prevents glutamate release, whereas application of prostaglandins (in particular PGE2) mimics and occludes the releasing action of GluR agonists. PGE2 promotes Ca2+-dependent glutamate release from cultured astrocytes and also from acute brain slices under conditions that suppress neuronal exocytotic release. When applied to the CA1 hippocampal region, PGE2 induces increases in [Ca2+]i both in astrocytes and in neurons. The [Ca2+]i increase in neurons is mediated by glutamate released from astrocytes, because it is abolished by GluR antagonists. Our results reveal a new pathway of regulated transmitter release from astrocytes and outline the existence of an integrated glutamatergic cross-talk between neurons and astrocytes in situ that may play critical roles in synaptic plasticity and in neurotoxicity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ca2+-dependent glutamate release from astrocytes in response to joint stimulation of AMPARs and mGluRs.
Figure 2: Activation of the arachidonate cascade and involvement of prostaglandins in the Ca2+-dependent release of glutamate from a.
Figure 3: AMPA + t-ACPD and PGE2 stimulate glutamate release from hippocampal slices with blocked neuronal exocytosis.
Figure 4: Effects of PGE2 on the [Ca2+]i of Indo-1-loaded hippocampal cells.

References

  1. 1

    Dani, J. W., Chernjavski, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429–440 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hassinger, T. D. et al. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Nicholls, D. G., Sihra, T. S. & Sanchez-Prieto, J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49, 50–57 (1987).

    CAS  Article  Google Scholar 

  7. 7

    Steinhäuser, C. & Gallo, V. News on glutamate receptors in glial cells. Trends Neurosci. 19, 339–345 (1996).

    Article  Google Scholar 

  8. 8

    Szatkowski, M., Barbour, B. & Attwell, D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348, 443–447 (1990).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S. & Waniewski, R. A. Swelling-induced release of glutamate, aspartate and taurine from astrocyte cultures. J. Neurosci. 10, 1583–1591 (1990).

    CAS  Article  Google Scholar 

  10. 10

    Vesce, S., Bezzi, P., Rossi, D., Meldolesi, J. & Volterra, A. HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS Lett. 411, 107–109 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Volterra, A. et al. The competitive transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-coltures via glutamate release rather than uptake inhibition. Eur. J. Neurosci. 8, 2019–2028 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Eriksson, P. S., Nilsson, M., Wågberg, M., Rönnbäck, L. & Hansson, E. Volume regulation of single astroglial cells in primary culture. Neurosci. Lett. 143, 195–199 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Jeftinija, S. D., Jeftinija, K. V. & Stefanovic, G. Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res. 750, 41–47 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Jeftinija, S. D., Jeftinija, K. V., Stefanovic, G. & Liu, F. Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J. Neurochem. 66, 674–684 (1996).

    Google Scholar 

  16. 16

    Dumuis, A., Pin, J. P., Oomagari, K., Sebben, M. & Bockaert, J. Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347, 182–184 (1990).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Piomelli, D. Eicosanoids in synaptic transmission. Crit. Rev. Neurobiol. 8, 65–83 (1994).

    CAS  PubMed  Google Scholar 

  18. 18

    Oomagari, K., Buisson, B., Dumuis, A., Bockaert, J. & Pin, J.-P. Effect of glutamate and ionomycin on the release of arachidonic acid, prostaglandins and HETEs from cultured neurons and astrocytes. Eur. J. Neurosci. 3, 928–939 (1991).

    Article  Google Scholar 

  19. 19

    Grynkiewicz, G., Poenie, M. & Tsien, R. Y. Anew generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  20. 20

    Calabresi, P., Benedetti, M., Mercuri, N. B. & Bernardi, G. Selective depression of synaptic transmission by tetanus toxin: a comparative study on hippocampal and neostriatal slices. Neuroscience 30, 663–670 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Mennerick, S., Benz, A. & Zorumski, C. F. Components of glial responses to exogenous and synaptic glutamate in rat hippocampal microcultures. J. Neurosci. 16, 55–64 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Baran, H., Heldt, R. & Hertting, G. Increased prostaglandin formation in rat brain following systemic application of kainic acid. Brain Res. 404, 107–112 (1987).

    CAS  Article  Google Scholar 

  24. 24

    Malmberg, A. B. & Yaksh, T. L. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257, 1276–1279 (1992).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Collaco-Moraes, Y., Asprey, B., Harrison, M. & de Belleroche, J. Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16, 1366–1372 (1996).

    CAS  Article  Google Scholar 

  26. 26

    O'Banion, M. K., Miller, J. C., Chang, J. W., Kaplan, M. D. & Coleman, P. D. Interleukin-1 β induces prostaglandin G/H synthase 2 (cyclooxygenase-2) in primary murine astrocyte cultures. J. Neurochem. 66, 2532–2540 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Stella, N., Tencé, M., Glowinski, J. & Prémont, J. Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J. Neurosci. 14, 568–575 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Athin slice preparation for patch clamp recordings from synaptically connected neurons of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Montecucco for the generous supply of purified tetanus neurotoxin; J.Meldolesi and R. Paoletti for critical reading of the manuscript and advice; S. Nicosia for suggestions and use of facilities; and B. Viviani, M. R. Accomazzo and P. Ciceri for experimental help. This work was supported by grants for the European Community, ‘Biomed 2 Contract BMH4-CT95-0571’ and Telethon-Italy to A.V., and from Human Frontier Science Program RG520/95 and Telethon-Italy to T.P.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Volterra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bezzi, P., Carmignoto, G., Pasti, L. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998). https://doi.org/10.1038/34651

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing