Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding recent observations of the largescale structure of the universe


RECENT galaxy redshift surveys1–3 offer evidence of a quasiperiodic network of 'sheets', with typical dimensions of ~100−1Mpe (h is the Hubble constant in units of 100 km s−1 Mpc−1). Galaxy formation models in which large-scale structure forms purely by gravitational instability from small initial irregularities seem to have problems producing structures on such large scales without violating constraints on the anisotropy of the microwave background, unless they start from apparently contrived initial-fluctuation spectra. Models in which galaxies and clusters have a non-gravitational (possibly explosive) origin seem to be better candidates for the progenitors of large sheets and bubbles, but one would still not expect a perfectly regular lattice. So how surprising are the observations, if they are interpreted in the framework of such models? Here I show that a random cellular model, which mimics the galaxy distribution formed as matter is swept up into shells around expanding void regions or by cosmic blast waves, reproduces the observed Great Walls, voids and periodic structures without undue difficulty.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. De L'apparent, V., Geller, M. J. & Huchra, J. H. Astrophys. J. 302, L1–L5 (1986).

    Article  ADS  Google Scholar 

  2. Geller, M. J. & Huchra, J. H. Science 246, 897–903 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Broadhurst, T. J., Ellis, R. S., Koo, D. C. & Szalay, A. S. Nature 343, 726–728 (1990).

    Article  ADS  Google Scholar 

  4. Dirichlet, G. L. J. Reine Angew. Math. 40, 209–227 (1850).

    Article  MathSciNet  Google Scholar 

  5. Voronoi, G. J. Reine Angew. Math. 134, 198–287 (1908).

    MathSciNet  Google Scholar 

  6. Matsuda, T. & Shima, E. Prog, theor. Phys. 71, 855–858 (1984).

    Article  ADS  Google Scholar 

  7. Icke, V. & Van de Weygaert, R. Astr. Astrophys. 184, 16–32 (1987).

    ADS  CAS  Google Scholar 

  8. Van de Weygaert, R. & Icke, V. Astr. Astrophys. 213, 1–9 (1989).

    ADS  Google Scholar 

  9. Yoshioka, S. & Ikeuchi, S. Astrophys. J. 341, 16–25 (1989).

    Article  ADS  Google Scholar 

  10. Weinberg, D. H., Ostriker, J. P. & Dekel, A. Astrophys. J. 336, 9–45 (1989).

    Article  ADS  Google Scholar 

  11. Stoyan, D., Kendall, W. S. & Mecke, J. Stochastic Geometry and its Applications (Akademie, Berlin, 1987).

    MATH  Google Scholar 

  12. Møller, J. Adv. appl. Probab. 21, 37–73 (1989).

    Article  Google Scholar 

  13. Broadhurst, T. J., Ellis, R. S. & Shanks, T. Mon. Not. R. astr. Soc. 235, 827–856 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Kendall, M. & Stuart, A. The Advanced Theory of Statistics. Vol. 1 4th edn (Griffin, London, 1977).

    MATH  Google Scholar 

  15. Kirshner, R. P., Oemler, A., Schechter, P. L. & Schectman, S. Astrophys. J. 248, L57–L60 (1981).

    Article  ADS  Google Scholar 

  16. White, S. D. M., Frenk, C. S., Davis, M. & Efstathiou, G. Astrophys. J. 313, 505–516 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Park, C. Mon. Not. R. astr. Soc. 242, 59P–61P (1990).

    Article  ADS  Google Scholar 

  18. Icke, V. Mon. Not R. astr. Soc. 206, 1P–3P (1984).

    Article  ADS  Google Scholar 

  19. Coles, P. & Barrow, J. D. Mon. Not. R. astr. Soc. 244, 557–562 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coles, P. Understanding recent observations of the largescale structure of the universe. Nature 346, 446–447 (1990).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing