Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silicate regulation of new production in the equatorial Pacific upwelling

Abstract

Surface waters of the eastern equatorial Pacific Ocean present the enigma of apparently high plant-nutrient concentrations but low phytoplankton biomass and productivity1. One explanation for this ‘high-nitrate, low-chlorophyll’ (HNLC) phenomenon has been that growth is limited by iron availability2,3. Here we use field data and a simple silicon-cycle model4 to investigate the HNLC condition for the upwelling zone of this ocean region. Measured silicate concentrations in surface waters are low and largely invariant with time, and set the upper limit on the total possible biological utilization of dissolved inorganic carbon. Chemical and biological data from surface waters indicate that diatoms—silica-shelled phytoplankton—carry out all the ‘new production’ (nitrate uptake)5. Smaller phytoplankton (picoplankton) accomplish most of the total primary production, largely fuelled by nitrogen regenerated in reduced forms as a result of grazing by zooplankton. The model predicts values of new and export production (the production exported to below the euphotic zone) that compare well with measured values6. New and export production are in balance for biogenic silica, whereas new production exceeds export for nitrogen. The HNLC condition in the upwelling zone can therefore be understood to be due to a chemostat-like regulation of nitrate uptake by upwelled silicate supply to diatoms: ‘low-silicate HNLC’. These results are not inconsistent with observations of iron-fertilized diatom growth during in situ experiments in ‘low-iron HNLC’ waters outside this upwelling zone2,3, but reflect the role of different supply rates of iron and silicate in determining the nature of the HNLC condition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data from the upper 200 m of water, at 140° W, 1° N to 1° S measured during JGOFS EqPac autumn 1.
Figure 2: Silicate pump model4 modified to include a picoplankton/micrograzer loop.

References

  1. Barber, R. T. & Chavez, F. P. Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr. 36, 1803–1815 (1991).

    Article  ADS  Google Scholar 

  2. Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Coale, K. H. et al. Amassive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Dugdale, R. C., Wilkerson, F. P. & Minas, H. J. The role of a silicate pump in driving new production. Deep-Sea Res. I 42, 697–719 (1995).

    Article  CAS  Google Scholar 

  5. Dugdale, R. C. & Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–207 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Murray, J. W., Johnson, E. & Garside, C. AU.S. JGOFS Process Study in the equatorial Pacific (EqPac): Introduction. Deep-Sea Res. II 42, 275–293 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Frost, B. W. & Franzen, N. C. Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83, 291–303 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Minas, H. J. & Minas, M. Net community production in “High Nutrient-Low Chlorophyll” waters of the tropical and Antarctic Oceans: grazing versus iron hypothesis. Oceanol. Acta 15, 145–162 (1992).

    CAS  Google Scholar 

  9. Wilkerson, F. P. & Dugdale, R. C. Silicate versus nitrate limitation in the equatorial Pacific estimated from satellite-derived sea-surface temperatures. Adv. Space Res. 18, 81–89 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Ku, T.-L., Luo, S., Kusakabe, M. & Bishop, J. K. B. 228Ra-derived nutrient budgets in the upper equatorial Pacific and the role of “new” silicate in limiting productivity. Deep-Sea Res. II 42, 479–497 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, New York, (1982)).

    Google Scholar 

  12. Brzezinkski, M. A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).

    Article  Google Scholar 

  13. Dugdale, R. C., Wilkerson, F. P., Barber, R. T. & Chavez, F. P. Estimating new production in the equatorial Pacific Ocean at 150° W. J. Geophys. Res. 97, 681–686 (1992).

    Article  ADS  Google Scholar 

  14. McCarthy, J. J., Garside, C., Nevins, J. L. & Barber, R. T. New production along 140° W in the equatorial Pacific during and following the 1992 El Niño event. Deep-Sea Res. II 43, 1065–1093 (1996).

    Article  ADS  Google Scholar 

  15. Probyn, T.A. The inorganic nitrogen nutrition of phytoplankton in the southern Benguela: New production, phytoplankton size, and implications for pelagic food webs. S. Afr. J. Sci. 12, 411–420 (1992).

    Article  Google Scholar 

  16. Nelson, D. M., Goering, J. J. & Boisseau, D. W. in Coastal Upwelling Vol. 1(ed. Richards, F. A.) (Am. Geophys. Un., Washington DC, (1981)).

    Google Scholar 

  17. Michaels, A. F. & Silver, M. W. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res. 35, 473–490 (1988).

    Article  ADS  Google Scholar 

  18. Wanninkhof, R. A. et al. Seasonal and lateral variations in carbon chemistry of surface water in the eastern equatorial Pacific during 1992. Deep-Sea Res. II 42, 387–409 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Bidigare, R. R. & Ondrusek, M. E. Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res. II 43, 809–833 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Kaczmarska, I. & Fryxell, G. A. Microphytoplankton of the equatorial Pacific: 140° W meridional transect during the 1992 El Niño. Deep-Sea Res. II 42, 535–558 (1995).

    Article  ADS  Google Scholar 

  21. Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R. & Chai, F. Regional estimate of the export flux of particulate organic carbon derived from Thorium-234 during the JGOFS EqPac program. Deep-Sea Res. II 42, 777–804 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Barber, R. T. et al. Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Niño. Deep-Sea Res. II 43, 933–969 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Sunda, W. G., Swift, D. G. & Huntsman, S. A. Low iron requirement for growth in oceanic phytoplankton. Nature 351, 55–57 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Fitzwater, S. E., Coale, K. H., Gordon, R. M., Johnson, K. S. & Ondrusek, M. E. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Res. II 43, 995–1015 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Dugdale, R. C. & Wilkerson, F. P. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 107–122 (Plenum, New York, (1992)).

    Book  Google Scholar 

  26. Archer, D. E. et al. Daily, seasonal and interannual variability of sea surface carbon and nutrient concentrations in the equatorial Pacific Ocean. Deep-Sea Res. II 43, 779–809 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US NSF and Region Provence Alpes Maritimes Cooperative Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Dugdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dugdale, R., Wilkerson, F. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998). https://doi.org/10.1038/34630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34630

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing