Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cis-trans recognition and subunit-specific degradation of short-lived proteins

Abstract

THE N-end rule, a code that relates the metabolic stability of a protein to the identity of its ammo-terminal residue1, is universal in that different versions of the N-end rule operate in mammals2–5, yeast1,6,7 and bacteria (unpublished data). The N-end rule-based degradation signal comprises a destabilizing amino-terminal residue and a specific internal lysine residue1,6,7. We now show that, in a multisubunit protein, these two determinants can be located on different subunits and still target the protein for destruction. Moreover, in this case (trans recognition) only the subunit that bears the lysine determinant is actually degraded. Thus an oligomeric protein can contain both short-lived and long-lived subunits. These insights have functional and practical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bachmair, A., Finley, D. & Varshavsky, A. Science 234, 179–186 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Varshavsky, A. et al. in Ubiquitin (ed. Rechsteiner, M.) 287–324 (Plenum, New York, 1988).

    Book  Google Scholar 

  3. Townsend, A. et al. J. exp. Med. 168, 1211–1224 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Reiss, Y., Kaim, D. & Hershko, A. J. biol. Chem. 263, 2693–2698 (1988).

    CAS  PubMed  Google Scholar 

  5. Gonda, D. K. et al. J. biol. Chem. 264, 16700–16712 (1989).

    CAS  PubMed  Google Scholar 

  6. Bachmair, A. & Varshavsky, A. Cell 56, 1019–1032 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Chau, V. et al. Science 243, 1576–1583 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Hershko, A. J. biol. Chem. 263, 15237–15240 (1988).

    CAS  PubMed  Google Scholar 

  9. Zipser, D. J. molec. Biol. 7, 113–121 (1963).

    Article  CAS  PubMed  Google Scholar 

  10. Shifrin, S. & Steers, E. Jr Biochim. biophys. Acta 133, 463–471 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. Givol, D., Craven, G. R., Steers, E. & Anfinsen, C. B. Biochim. biophys. Acta 113, 120–125 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. Schimke, R. T. Adv. Enzymol. 37, 135–187 (1973).

    CAS  PubMed  Google Scholar 

  13. Goldberg, A. K. & Dice, J. F. A. Rev. Biochem. 43, 835–869 (1974).

    Article  CAS  Google Scholar 

  14. Hare, J. F. & Hodges, R. J. biol. Chem. 257, 3575–3580 (1982).

    CAS  PubMed  Google Scholar 

  15. Evans, T. et al. Cell 33, 389–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Murray, A. W., Solomon, M. J. & Kirschner, M. W. Nature 339, 280–286 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Abel, T. & Maniatis, T. Nature 341, 24–25 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Goutte, C. & Johnson, A. D. Cell 52, 875–882 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Ingham, P. W. Nature 335, 25–34 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Scott, M. P. & Carroll, S. B. Cell 51, 689–698 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Hochstrasser, M. & Varshavsky, A. Cell 61, 697–708 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley, New York, 1987).

    Google Scholar 

  23. Ullman, A. & Monod, J. Biochem. biophys. Res. Commun. 35, 35–42 (1969).

    Article  Google Scholar 

  24. Guarente, L. Meth. Enzym. 101, 181–183 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Ferber, S. & Ciechanover, A. Nature 326, 808–811 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson , E., Gonda, D. & Varshavsky, A. Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346, 287–291 (1990). https://doi.org/10.1038/346287a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346287a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing