Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Energetics of running: a new perspective


THE amount of energy used to run a mile is nearly the same whether it is run at top speed or at a leisurely pace (although it is used more rapidly at the higher speed). This puzzling independence of energy cost and speed is found generally among running animals1, although, on a per gram basis, cost is much higher for smaller animals. Running involves little work against the environment2; work is done by muscles and tendons to lift and accelerate the body and limbs. Some of the work is recovered from muscle-tendon springs without metabolic cost3,4 and work rate does not parallel metabolic rate with either speed or size. Regardless of the amount of work muscles do, they must be activated and develop force to support the weight of the body. Load-carrying experiments have shown that the cost of supporting an extra newton of load is the same as the weight-specific cost of running5. Size differences in cost are proportional to stride frequency at equivalent speeds, suggesting that the time available for developing force is important in determining cost6,7. We report a simple inverse relationship between the rate of energy used for running and the time the foot applies force to the ground during each stride. These results support the hypothesis8 that it is primarily the cost of supporting the animal's weight and the time course of generating this force that determines the cost of running.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Full, R. J. in Energy Transformations in Cells and Animals (eds Wieser, W. & Gnaiger, E.) 175–182 (Thieme, Stuttgart, 1989).

    Google Scholar 

  2. Pugh, L. G. C. E. J. Physiol., Lond. 213, 255–276 (1971).

    Article  CAS  Google Scholar 

  3. Alexander, R. McN. Am. Zool. 24, 85–94 (1984).

    Article  Google Scholar 

  4. Biewener, A., Alexander, R. McN. & Heglund, N. C. J. Zool. 195, 369–383 (1981).

    Article  Google Scholar 

  5. Taylor, C. R., Heglund, N. C., McMahon, T. A. & Looney, T. R. J. exp Biol. 86, 9–18 (1980).

    Google Scholar 

  6. Heglund, N. C., Fedak, M. A., Taylor, C. R. & Cavagna, G. A. J. exp Biol. 97, 57–66 (1982).

    CAS  PubMed  Google Scholar 

  7. Heglund, N. C. & Taylor, C. R. J. exp. Biol. 138, 301–318 (1988).

    CAS  PubMed  Google Scholar 

  8. Taylor, C. R. J. exp Biol. 115, 253–262 (1985).

    CAS  PubMed  Google Scholar 

  9. Cavagna, G. A., Heglund, N. C. & Taylor, C. R. Am. J. Physiol. 233, R243–R261 (1977).

    CAS  PubMed  Google Scholar 

  10. Biewener, A. A. Science 245, 45–48 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Alexander, R. McN., Jayes, A. S., Maloiy, G. M. O. & Wathutu, E. M. J. Zool. 194, 539–552 (1981).

    Article  Google Scholar 

  12. Huxley, A. F. J. Physiol. 243, 1–43 (1974).

    Article  CAS  Google Scholar 

  13. Rall, J. Ex. Sports Sci. Rev. 13, 33–74 (1985).

    CAS  Google Scholar 

  14. Fedak, M. A., Rome, L. & Seeherman, H. J. J. appl. Physiol. 51, 772–776 (1981).

    Article  CAS  Google Scholar 

  15. Schmidt-Nielsen, K. Science 177 222–227, 1972.

    Article  ADS  CAS  Google Scholar 

  16. Heglund, N. C. J. exp. Biol. 93, 333–338 (1981).

    Google Scholar 

  17. Thompson, S. D., MacMillen, R. E., Burke, E. M. & Taylor, C. R. Nature 287, 223–224 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Fedak, M. A. & Seeherman, H. J. Nature 282, 713–716 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Taylor, C. R., Heglund, N. C. & Maloiy, G. M. O. J. exp Biol. 97, 1–21 (1982).

    CAS  PubMed  Google Scholar 

  20. Alexander, R. McN., Langman, V. A., & Jayes, A. S. J. Zool. 183, 291–300 (1977).

    Article  Google Scholar 

  21. Taylor, C. R., Schmidt-Nielsen, K., & Raab, J. L. Am. J. Physiol. 219 1104–1107 (1970).

    CAS  PubMed  Google Scholar 

  22. Gray, J. Animal Locomotion (Weidenfeld & Nicolson, London, 1968).

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kram, R., Taylor, C. Energetics of running: a new perspective. Nature 346, 265–267 (1990).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing