Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Production of hydrogen peroxide in forest air by reaction of ozone with terpenes


HYDROGEN peroxide and other hydroperoxides are thought to play a part in forest decline1–7. The toxic effects of these compounds on plants are well documented1–4 and some hydroperoxides, including H2O2, have been detected in forest air5,6 and in plant leaves7. Higher concentrations of H2O2 have been found inside forests compared with those measured close to the forest perimeter8. The reaction of atmospheric ozone with the isoprene and terpenes emitted by vegetation results in the formation of a wide variety of radicals9,10 whose subsequent reactions can contribute to the formation of hydroperoxides. We have used tunable-diode laser absorption spectroscopy to investigate the reaction of ozone with some alkenes, including isoprene and some monoterpenes, to see whether H2O2 is formed under a variety of atmospheric conditions. All the reactions studied produced H2O2 and a significant increase in the yields of H2O2 was observed when water vapour was present. The 'water effect' is the result of a direct reaction of water vapour with the Criegee biradical (the main intermediate in reactions of ozone with alkenes). From our results, we conclude that this reaction could have a more important role in the formation of H2O2 and other hydroperoxides than the self- or cross-reactions of peroxy radicals, thereby contributing to forest decline.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Masuch, D., Kettrup, P., Mallant, A. & Slanina, J. Verein Deutscher Ingenieure-Berichte 560, 761–776 (1985).

    CAS  Google Scholar 

  2. 2

    Möller, D. Atmos. Envir. 23, 1625–1627 (1989).

    Article  Google Scholar 

  3. 3

    Sies, H. Angew. Chem. 98, 1061–1075 (1986).

    CAS  Article  Google Scholar 

  4. 4

    Rennenberg, H. in Symp. Verteilung und Wirkung von Photooxidanten im Alpenraum, 360–370. (Gesellschaft für Strahlen und Umweltforschung, Garmisch-Partenkirchen, 1988).

    Google Scholar 

  5. 5

    Hellpointer, E. & Gäb, S. Nature 337, 631–634 (1989).

    ADS  Article  Google Scholar 

  6. 6

    Kok, G. L. & McLaren, S. E. Proc. Int. Conf. Generation of Oxidants on Regional and Global Scale abstr. 6–3 (University of East Anglia, 1989).

    Google Scholar 

  7. 7

    Hewitt, N. C., Kok, G. L. & Fall, R. Nature 344, 56–58 (1990).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Jacob, P. & Klockow, D. Proc. 3rd French-German Workshop on Tropospheric Chemistry by Laboratory Studies (eds Becker, K. H. & Carlier, P.) 77–79 (Universitact Wuppertal, 1987).

    Google Scholar 

  9. 9

    Atkinson, R. & Lloyd, A. C. J. phys. Chem. Ref. Data 13, 369–444 (1984).

    Article  Google Scholar 

  10. 10

    Martinez, R. I., Herron, J. T. & Huie, R. E. J. Am. chem. Soc. 103, 3807–3820 (1981).

    CAS  Article  Google Scholar 

  11. 11

    Bechara, J., Becker, K. H. & Brockmann, K. J. Proc. 5th European Symp. Physico-Chemical Behaviour of Atmospheric Pollutants (Restelli, G. & Angeletti, G.) 27–31 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  12. 12

    Becker, K. H., Brockmann, K. J. & Bechara, J. Geophys. Res. Lett. 16, 1367–1370 (1990).

    ADS  Article  Google Scholar 

  13. 13

    Graedel, T. E. Rev. Geophys. & Space Phys. 17, 937–947 (1979).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Yokouchi, Y. & Ambe, Y. Atmos. Envir. 19, 1271–1276 (1985).

    CAS  Article  Google Scholar 

  15. 15

    Bailey, P. S. Chem. Rev. 58, 925–1010 (1958).

    CAS  Article  Google Scholar 

  16. 16

    Hamilton, E. J. & Lii, R. Int. J. chem. Kinet. 9, 875–885 (1977).

    CAS  Article  Google Scholar 

  17. 17

    Hatakeyama, S., Bandow, H., Okuda, M. & Akimoto, H. J. phys. Chem. 85, 2249–2254 (1981).

    CAS  Article  Google Scholar 

  18. 18

    Niki, H., Maker, P. D., Savage, C. M. & Breitenbach, L. P. J. phys. Chem. 86, 1858–1861 (1982).

    CAS  Article  Google Scholar 

  19. 19

    Wadt, W. R. & Goddard, W. A. J. Am. chem. Soc. 97, 3004–3021 (1975).

    CAS  Article  Google Scholar 

  20. 20

    Yamamoto, Y., Niki, E., Shiokawa, H. & Kamiya, Y. J. org. Chem. 44, 2137–2142 (1979).

    CAS  Article  Google Scholar 

  21. 21

    Gäb, S., Hellpointer, E., Turner, W. V. & Korte, F. Nature 316, 535–536 (1985).

    ADS  Article  Google Scholar 

  22. 22

    Herron, J. T., Martinez, R. I. & Huie, R. E. Int. J. chem. Kinet 14, 201–224 (1982).

    CAS  Article  Google Scholar 

  23. 23

    Suto, M., Manzanares, E. R. & Lee, L. C. Envir. Sci. Technol. 19, 815–820 (1985).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Chameides, W. L. Envir. Sci. Technol. 23, 595–600 (1989).

    ADS  CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becker, K., Brockmann, K. & Bechara, J. Production of hydrogen peroxide in forest air by reaction of ozone with terpenes. Nature 346, 256–258 (1990).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing