Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Picosecond discharges and stick–slip friction at a moving meniscus of mercury on glass

Abstract

At a meeting of the French Academy in 1700, Bernoulli demonstrated that swirling mercury in an evacuated flask generates light1,2. He emphasized that this ‘barometer light’ “has not been explained since its discovery about 30 years ago” by Picard3. Here we revisit this phenomenon and find that the repetitive emission of light from mercury moving over glass is accompanied by the collective picosecond transfer of large numbers of electrons. When brought into contact with mercury, the glass acquires a net charge. This charge separation provides a force which, in our experiment in a rotating flask, drags mercury against gravity in the direction of the motion of the glass. Eventually the edge of the mercury slips relative to the glass, accompanied by a picosecond electrical discharge and a flash of light. This repetitive build-up and discharge of static electricity thus gives rise to stick–slip motion. The statistics of the intervals between events and their respective magnitudes are history-dependent and are not yet understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photograph of the “barometer light”, which is the orange line of light generated at the intersection of the mercury meniscus and the wall of the rotating glass cylinder.
Figure 2: Correlation between stick–slip friction and picosecond electrical discharges at a glass–mercury interface.
Figure 3: Plot of discharge events in terms of the time to the next event and its strength.

Similar content being viewed by others

References

  1. Bernoulli, J. I. Sur le phosphore du baromètre. Histoire Acad. Roy. Paris 5–8 (1700); 1–8 (1701).

  2. Harvey, E. N. A History of Luminescence (Am. Philosophical Soc., Philadelphia, (1957)).

    Google Scholar 

  3. Picard, J. Sur la lumière du baromètre. Mem. Acad. Roy. Sci. 2, 202–203 (1676).

    Google Scholar 

  4. Krim, J. Friction at the atomic scale. Sci. Am. 275, 48–51, 54–56 (1996).

    Article  Google Scholar 

  5. Harper, W. R. Contact and Frictional Electrification (Clarendon, Oxford, (1967)).

    Google Scholar 

  6. Bowden, F. P. & Tabor, D. The Friction and Lubrication of Solids (Clarendon, Oxford, (1986)).

    MATH  Google Scholar 

  7. Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Rabinowicz, E. Friction and Wear of Materials (Wiley, New York, (1965)); Polishing. Sci. Am. 218, 91–99 (1968).

    Google Scholar 

  9. Kemball, C. The adsorption of vapours on mercury. IV. Surface potentials and chemisorption. Proc. R. Soc. Lond. A 201, 377–391 (1950).

    ADS  Google Scholar 

  10. Hays, D. A. in Conference Series No. 48 265–272 (Conf. Ser. No. 48, Inst. Phys., (1979)).

    Google Scholar 

  11. Dybwad, G. L. & Mandeville, C. E. Generation of light by the relative motion of contiguous surfaces of mercury and glass. Phys. Rev. 161, 527–532 (1967).

    Article  ADS  CAS  Google Scholar 

  12. Rayleigh, Lor Experiments upon surface-films. Phil. Mag. 33, 363–373 (1892).

    Article  Google Scholar 

  13. Handbook of Chemistry and Physics 2989 (Chemical Rubber, Cleveland, (1954)).

  14. Bernoulli, J. I. Nouvelle maniere de rendre les baromètres lumineux. Mem. Acad. Roy. Paris 178–190 (1700).

  15. Barber, B. P. & Putterman, S. J. Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991).

    Article  ADS  Google Scholar 

  16. Hiller, R. A., Putterman, S. J. & Barber, B. P. Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69, 1182–1184 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Barber, B. P. et al. Defining the unknowns of sonoluminescence. Phys. Rep. 281, 65–143 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Meek, J. M. & Craggs, J. D. (eds) Electrical Breakdown of Gases (Wiley, New York, (1978)).

    MATH  Google Scholar 

  19. Carlson, J. M., Langer, J. S. & Shaw, B. E. Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994).

    Article  ADS  Google Scholar 

  20. Demirel, A. L. & Granick, S. Friction fluctuations and friction memory in stick-slip motion. Phys. Rev. Lett. 77, 4330–4333 (1996).

    Article  ADS  Google Scholar 

  21. Burridge, R. & Knopoff, L. Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967).

    Google Scholar 

  22. Rees, J. A. Electrical Breakdown of Gases (Macmillan, New York, (1973)).

    Google Scholar 

  23. Penning, F. M. Electrical Discharges in Gases (Cleaver Hume, London, (1957)).

    Google Scholar 

  24. Loeb, L. B. Fundamental Processes of Electrical Breakdown in Gases (Wiley, New York, (1939)).

    Google Scholar 

  25. Moore, A. D. Electrostatics (Doubleday, New York, (1968)).

    Google Scholar 

  26. Terris, B. D., Stern, J. E., Rugar, D. & Mamin, H.J. Contact electrification using force microscopy. Phys. Rev. Lett. 63, 2669–2672 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Lowell, J. Tunnelling between metals and insulators and its role in contact electrification. J. Phys. D 12, 1541–1554 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Kwetkus, B. A., Sattler, K. & Siegmann, H.-C. Gas breakdown in contact electrification. J. Phys. D 25, 139–146 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Raizer, Y. P. Gas Discharge Physics (Springer, Berlin, (1991)).

    Book  Google Scholar 

Download references

Acknowledgements

We thank L. Knopoff, T. Erber, J. Raffelski, G. Morales, S. Cowley, R. Löfstedt and P.H.Roberts for discussions, and E. Adams and C. Hiller for archival assistance. This work was supported by the US NSF and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budakian, R., Weninger, K., Hiller, R. et al. Picosecond discharges and stick–slip friction at a moving meniscus of mercury on glass. Nature 391, 266–268 (1998). https://doi.org/10.1038/34617

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34617

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing