Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid evolution in response to high-temperature selection

Abstract

TEMPERATURE is an important environmental factor affecting all organisms1,2, and there is ample evidence from comparative physiology that species1,3 and even conspecific populations4,5 can adapt genetically to different temperature regimes. But the effect of these adaptations on fitness and the rapidity of their evolution is unknown, as is the extent to which they depend on pre-existing genetic variation rather than new mutations. We have begun a study of the evolutionary adaptation of Escherichia coli to different temperature regimes, taking advantage of the large population sizes and short generation times in experiments on this bacterial species6–10. We report significant improvement in temperature-specific fitness of lines maintained at 42 °C for 200 generations (about one month). These changes in fitness are due to selection on de novo mutations and show that some biological systems can evolve rapidly in response to changes in environmental factors such as temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Princeton University Press, Princeton, New Jersey, 1984).

    Book  Google Scholar 

  2. Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Halt, London, 1987).

    Book  Google Scholar 

  3. Prosser, C. L. Adaptational Biology: Molecules to Organisms (Wiley, New York, 1986).

    Google Scholar 

  4. Powers, D. A. in New Directions in Ecological Physiology (eds Feder, M. E., Bennett, A. F., Burggren, W. W. & Huey, R. B.) 102–130 (Cambridge University Press, New York, 1987).

    Google Scholar 

  5. Watt, W. B. Am. Nat. 125, 118–143 (1985).

    Article  CAS  Google Scholar 

  6. Novick, A. & Szilard, L. Proc. natn. Acad. Sci. U.S.A. 36, 708–719 (1950).

    Article  ADS  CAS  Google Scholar 

  7. Atwood, K. C., Schneider, L. K. & Ryan, F. J. Proc. natn. Acad. Sci. U.S.A. 37, 146–155 (1951).

    Article  ADS  CAS  Google Scholar 

  8. Dykhuizen, D. E. & Hartl, D. L. Microbiol. Rev. 47, 150–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lenski, R. E. Evolution 42, 425–432 (1988).

    PubMed  Google Scholar 

  10. Lenski, R. E. Evolution 42, 433–440 (1988).

    PubMed  Google Scholar 

  11. Carlton, B. C. & Brown, B. J. in Manual for Methods for General Microbiology (ed. Gerhardt, P.) 222–242 (Am. Soc. Microbiol., Washington DC, 1981).

    Google Scholar 

  12. Cohan, F. M. & Hoffmann, A. A. Genetics 114, 145–163 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Falconer, D. S. Introduction to Quantitative Genetics (Longman, Essex, 1981).

    Google Scholar 

  14. Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, San Francisco, 1981).

  15. Ryan, F. J. & Kiritani, K. J. gen. Microbiol. 20, 644–653 (1959).

    Article  CAS  PubMed  Google Scholar 

  16. Maynard Smith, J. J. theor. Biol. 30, 319–335 (1971).

    Article  Google Scholar 

  17. Moran, P. A. P. The Statistical Processes of Evolutionary Theory (Oxford University Press, Oxford, 1962).

    MATH  Google Scholar 

  18. Huey, R. B. & Hertz, P. E. Evolution 38, 441–444 (1984).

    Article  PubMed  Google Scholar 

  19. Huey, R. B. & Kingsolver, J. G. Trends Ecol. Evol. 4, 131–135 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. National Research Council, Carbon Dioxide Assessment Committee. Changing Climate (National Academy, Washington DC, 1983).

  21. Abrahamson, D. E. The Challenge of Global Warming (Island, Washington DC, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, A., Dao, K. & Lenski, R. Rapid evolution in response to high-temperature selection. Nature 346, 79–81 (1990). https://doi.org/10.1038/346079a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346079a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing