Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites

Abstract

IN the CAl hippocampal region, intracellular calcium is a putative second messenger1,2 for the induction of long-term potentiation (LTP), a persistent increase of synaptic transmission produced by high frequency afferent fibre stimulation3. Because LTP in this region is blocked by the NMDA (N-methyl-D-aspartate) receptor antagonist AP5 (DL-2-amino-5-phosphonovaleric acid) (ref. 4) and the calcium permeability of NMDA receptors is controlled by a voltage-dependent magnesium block5,6, a model has emerged that suggests that the calcium permeability of NMDA receptor-coupled ion channels7–10 is the biophysical basis for LTP induction11–15. We have performed microfluorometric measurements16 in individual CAl pyramidal cells during stimulus trains that induce LTP. In addition to a widespread component of postsynaptic calcium accumulation previously described17, we now report that brief high frequency stimulus trains produce a transient component spatially localized to dendritic areas near activated afférents. This localized component is blocked by the NMDA receptor antagonist AP5. The results directly confirm the calcium rise predicted by NMDA receptor models of LTP induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Bliss, T. V. P. & Lomo, T. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  4. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 19–31 (1983).

    Article  CAS  Google Scholar 

  5. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  7. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Mayer, M. L. & Westbrook, G. L. J. Physiol., Lond. 394, 501–527 (1987).

    Article  CAS  Google Scholar 

  10. Ascher, P. & Nowak, L. J. Physiol., Lond. 399, 247–266 (1988).

    Article  CAS  Google Scholar 

  11. Bliss, T. V. P. & Lynch, M. A. in Long-Term Potentiation: From Biophysics to Behavior (eds Landfield, P. W. & Deadwyler, S. A.) 3–72 (Liss, New York, 1988).

    Google Scholar 

  12. Wigstrom, H. & Gustafsson, B. in Long-term Potentiation: From Biophysics to Behavior (eds Landfield, P. W. & Deadwyler, S. A.) 73–107 (Liss, New York, 1988).

    Google Scholar 

  13. Nicoll, R. A., Kauer, J. A. & Malenka, R. C. Neuron 1, 97–103 (1988).

    Article  CAS  Google Scholar 

  14. Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Science 242, 724–728 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Collingridge, G. L. & Davies, S. N. in The NMDA Receptor (eds Watkins, J. C. & Collingridge, G. L.) 123–135 (Oxford University Press, 1989).

    Google Scholar 

  16. Tank, D. W., Sugimori, M., Connor, J. A. & Llinás, R. Science 242, 773–777 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  19. Andersen, P., Silfvenius, H., Sundberg, S. H. & Sveen, O. J. Physiol., Lond. 307, 273–299 (1980).

    Article  CAS  Google Scholar 

  20. Dunwiddie, T. & Lynch, G. J. Physiol., Lond. 276, 353–367 (1978).

    Article  CAS  Google Scholar 

  21. Holmes, W. R. & Levy, W. B. J. Neurophysiol. (in the press).

  22. Lynch, G. S., Dunwiddie, T. & Gribkoff, V. Nature 266, 737–739 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Levy, W. B. & Steward, O. Neuroscience 8, 791–797 (1983).

    Article  CAS  Google Scholar 

  24. Stanton, P. K. & Sejnowski, T. J. Nature 339, 215–218 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Lisman, J. Proc. natn. Acad. Sci. U.S.A. 86, 9574–9578 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Malinow, R., Schulman, H. & Tsien, R. W. Science 245, 862–866 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Malenka, R. C. et al. Nature 340, 554–557 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Rall, W. & Rinzel, J. Biophys. J. 13, 648–688 (1973).

    Article  ADS  CAS  Google Scholar 

  29. Rall, W. & Segev, I. in Computer Simulation in Brain Science (eds Cotterill, R. M. J.) 26–43 (Cambridge University Press, 1988).

    Book  Google Scholar 

  30. Schwartzkroin, P. A. Brain Res. 85, 423–436 (1975).

    Article  CAS  Google Scholar 

  31. Collingridge, G. L., Herron, C. E. & Lester, R. A. J. J. Physiol. Lond. 399, 301–312 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regehr, W., Tank, D. Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites. Nature 345, 807–810 (1990). https://doi.org/10.1038/345807a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345807a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing